
Unit 4
PROGRAMMING IN C

COMPILED BY RAMESH PRAJAPATI 1

Review of C Programming

• C is a general-purpose programming language used to

write programs

• High level language and easy to use

• Base programming language for other

• Provides core concept of loop, array, string, function,

structure, file handling etc.

COMPILED BY RAMESH PRAJAPATI 2

Review: Features of C

• Simple to learn and understand

• Simple in size only having 32 keywords

• Portable or machine independent

• Provides lot of inbuilt functions

• Faster execution

• Extensible

• Reusable

COMPILED BY RAMESH PRAJAPATI 3

Review: Structure of C

#include <stdio.h>

#include<conio.h>

void main(){

int x=5;

printf("value of x = %d", x);

getch();

}

COMPILED BY RAMESH PRAJAPATI 4

Review: Preprocessor and Header files

• Header files are those files that are defined to be

included at the beginning of program that contains

definition of data types and declaration of variables

used by function

• Functions and variables are defined in-built in

header files

• Ex. stdio.h, conio.h, math.h, process.h etc

COMPILED BY RAMESH PRAJAPATI 5

Review: C character set

• Alphabets: A-Z, a-z

• Numbers: 0-9

• Special characters:

; : { } , " ' |

\ > < / ~ _ []

! $? * # ^ @ &

COMPILED BY RAMESH PRAJAPATI 6

Review: Use of comments

• Single Line Comment:
• To comment a single line, we simply place double slashes (//) at beginning

• Single line comment does not have ending slashes

• Eg. //This is single line comment

• Block/Multi Line Comment:

• To comment multiple line or block of lines we use /* as opening and */ as

closing

• We can comment multiple lines or blocks of line

• It has both opening and closing portion

• Eg. /* This is our
Multiple line comment */

COMPILED BY RAMESH PRAJAPATI 7

Review: Identifiers, Keywords & Tokens

• Basic element recognized by the compiler is known as tokens

• They are text that does not break down into component elements

• Keywords are words that are used in source code i.e. predefined words

• Keywords like int, float, goto, if, else, etc are also called tokens

• Identifiers are the names of variable or functions that identifies some

value or procedure

COMPILED BY RAMESH PRAJAPATI 8

Review: Basic Data Types in C

• There are basically two types of data

1. Primary data types
◦ Char : for character types of data

◦ Int : for whole number integer types of data

◦ Float : for real number with decimal point of data

◦ Double : for large or lengthy numbers

◦ void : for NULL or empty type of data

2. Secondary data types
◦ Array : collection of similar objects or data elements

◦ Pointer : holds memory location address point

◦ Structure : user defined collection of various data types

◦ Union : similar to structure but saves memory usage

◦ Enum : similar to array but with prefixed values

COMPILED BY RAMESH PRAJAPATI 9

Review: Constant and Variables

1. Constant

◦ A constant is a fixed value which cannot be changed during the program

execution

◦ Constant can be defined using preprocessor directives

◦ e.g. #define PI 3.14;

2. Variable

◦ The value of variable can be changed during program execution.

◦ Variable can hold values at a time

◦ e.g. int x = 2;

COMPILED BY RAMESH PRAJAPATI 10

Review: Type of specifier

• The input and output data are formatted by specific pattern

• These patterns are generated by using specific tokens in C programs

• Tokens that are used to format data are called specifiers

• Some of the specifiers are :

1. Escape sequence

◦ \n \t \v \a

2. Format specifier

◦ %d %c %f %l

COMPILED BY RAMESH PRAJAPATI 11

Review: Operators and Expressions

• An operator is a sign or symbol, which performs an operation or

evaluation on one or more operands

• Operands are values or variables declared within program

• For an expression: a + b

• here a and b are operands and + is operator

COMPILED BY RAMESH PRAJAPATI 12

Review: Operators

• Arithmetic operators : + - * / %

• Relational operators : < > <= >= == !=

• Logical operators : && || !

• Assignment operators : = += -= *= /= %=

• Conditional/Ternary operators: ? :

• Bitwise operators : & | ^

• Comma operators : ,

• Increment/Decrement operators: ++ --

COMPILED BY RAMESH PRAJAPATI 13

Review: Input/output (I/O) functions

• Input/output functions are categorized into following types
1. Formatted I/O functions

Function Description

printf()
It is an output function that prints a character or string or numeric values on the

screen. It offers %d, %c, %s, %u conversion characters for various data types

scanf()
It is an input function that reads the input from keyboard and different data can be

entered like int, float, char, string etc into C program

fprintf() It is an output function that is used to write strings into files

fscanf() It is an input function that is used to read strings from files

COMPILED BY RAMESH PRAJAPATI 14

Review: Input/output (I/O) functions

• Input/output functions are categorized into following types
1. Unformatted I/O functions

Function Description

getch()
It is an input function which reads only one character at a time without echoing

(displaying) on screen

getche()
It is an input function which reads only one character at a time with echoing

(displaying) on screen

putch() It is output function that outputs a single character on the screen

getchar() It is an input function to read character from keyboard

putchar() It is an output function to print a character on the screen

gets() It is an input function that reads a single or multiple words(string) from keyboard

puts() It is an output function that prints a single or multiple words(string) on screen
COMPILED BY RAMESH PRAJAPATI 15

Review: Control Statements

• They define flow of control in a program and enable us to specify order

of instruction execution.

• Control structures are very core part of programming

• There are 3 basic control structures
1. Sequential Control Structure

2. Decision Control Structure

3. Looping Control Structure

COMPILED BY RAMESH PRAJAPATI 16

Review: Control Statements

1. Sequential Control Structure

◦ They are default control structure.

◦ In sequential control each commands or statements are executed one after

another in sequential fashion

◦ Statements are executed from the very first line from main function

COMPILED BY RAMESH PRAJAPATI 17

Review: Control Statements

1. Decision Control Structure

◦ They are used to divert the flow of control/execution on the basis of

condition
1. if statement

2. if ... else statement

3. if ... else if ... else statement

4. Nested if ... else statement

5. switch statement

COMPILED BY RAMESH PRAJAPATI 18

Review: Control Statements

1. Looping Control Structure

◦ They are used to execute statement or block of statement repeatedly for

until certain condition is satisfied.
1. for loop

2. while loop

3. do-while loop

COMPILED BY RAMESH PRAJAPATI 19

Functions

• A function is a block of code that performs a specific

task when called.

• There must be at least one function i.e. main().

Every program in C starts from main() function

• It helps to break down the large and complex

program into small and manageable codes

COMPILED BY RAMESH PRAJAPATI 20

Functions

• Syntax:

• return_type function_name (parameter1, para2..)

{

function block

}

COMPILED BY RAMESH PRAJAPATI 21

advantages of using function

• avoids repetitions of code

• increases program readability

• divide the large complex codes into small simplex ones

• easy debugging, modification and updating

• easy code organization and reuse

• saves time and effort of programmer

COMPILED BY RAMESH PRAJAPATI 22

Library vs user defined function

• 1. Library functions/Built-in function/Predefined function

• also called built-in function or pre-defined function

• already defined, compiled and stored in headers files

• easier to write and use

• not necessary to declare and define such function

• we can just call wherever and whenever required

• e.g. printf(), scanf(), strlen(), strcpy() etc.

COMPILED BY RAMESH PRAJAPATI 23

advantages of Library function

• easy to use and are 100% accurate

• each library function performs specific tasks

• reduction in program size

• saves time of development

COMPILED BY RAMESH PRAJAPATI 24

Self Study

• List out the built-in functions defined in following header

files

• stdio.h

• math.h

• string.h

• stdlib.h

• time.h

• ctype.h

COMPILED BY RAMESH PRAJAPATI 25

User Defined Function

• Function written and used by programmers is called user

defined function

• function must have following characteristics

• function prototype (declaration)

• function body (definition)

• function call

• return statement (optional)

COMPILED BY RAMESH PRAJAPATI 26

User defined function

• syntax

return_type function_name (arg1, arg2, ...)

{

function_body

}

COMPILED BY RAMESH PRAJAPATI 27

characteristics of user defined function

• function name must be unique

• can perform task without interfering other i.e. independent

• function can receive value from the calling program

• can pass and return values to and from function

• not executed until called

• can be called multiple times once defined

COMPILED BY RAMESH PRAJAPATI 28

advantages of user defined function

• code can be reused multiple times

• large complex code can be divided into small simple sub

programs

• easy to debug and maintain

• makes easy to understand logic

• avoids re-writing of codes

COMPILED BY RAMESH PRAJAPATI 29

User defined Vs library
Basis User defined function Library function

function

creation

created by user as their own

requirements

can not be created by user as their own

storage not stored in library or header file stored in header or library files

renaming name can be changed name can not be changed

function

declaration

user must declare and define

these function

declaration and definition is not

required

function

definition

not pre defined pre-defined in header files

function call part of program, compiled at

runtime

part of header files compiled at runtime

example sum(), calculate(2,3) etc printf(), scanf(), getch(), sqrt() etc
COMPILED BY RAMESH PRAJAPATI 30

Types of user defined functions

1. With no return type and with no arguments

2. With no return type but with arguments

3. With return type but with no arguments

4. With return type and with arguments

Question:

Write a C Program that accepts radius and displays area or

circle using different types of functions.

COMPILED BY RAMESH PRAJAPATI 31

self study

• Types of user defined function on the basis of return type and

arguments

COMPILED BY RAMESH PRAJAPATI 32

1. No Return Type & No Arguments

#include<stdio.h>

#include<conio.h>

void calcArea();

void main(){

calcArea();

getch();

}

void calcArea(){

float a, r;

printf("Enter radius: ");

scanf("%f", &r);

a = 3.14*r*r;

printf("Area of circle is: %f", a);

}

COMPILED BY RAMESH PRAJAPATI 33

2. No Return Type But Arguments

#include<stdio.h>

#include<conio.h>

void calcArea(float r);

void main(){

float r;

printf(" Enter radius: ");

scanf("%f", &r);

calcArea(r);

getch();

}

void calcArea(float r){

float a;

a = 3.14*r*r;

printf("Area of circle is: %f", a);

}

COMPILED BY RAMESH PRAJAPATI 34

3. With Return Type But No Arguments

#include<stdio.h>

#include<conio.h>

float calcArea();

void main(){

float a;

a = calcArea();

printf("Area of circle is: %f", a);

getch();

}

float calcArea(){

float r, a;

printf(" Enter radius: ");

scanf("%f", &r);

a = 3.14*r*r;

return a;

}

COMPILED BY RAMESH PRAJAPATI 35

2. With Return Type and Arguments

#include<stdio.h>

#include<conio.h>

float calcArea(float r);

void main(){

float a, r;

printf(" Enter radius: ");

scanf("%f", &r);

a = calcArea(r);

printf("Area of circle is: %f", a);

getch();

}

float calcArea(float r){

float a;

a = 3.14*r*r;

return a;

}

COMPILED BY RAMESH PRAJAPATI 36

Accessing Function By Passing Values

• Arguments or parameters are used to receive required values

from the function call

• Number of arguments must be matched with the called and

calling function

• Actual parameters: that appear in a function call

• Formal parameters: that appear in function declaration

COMPILED BY RAMESH PRAJAPATI 37

Parameter Passing Mechanism

• There are two parameter passing mechanism

1. Call by Value (pass by value)

2. Call by Reference (pass by reference)

COMPILED BY RAMESH PRAJAPATI 38

1. Call By Value (Pass By Value)

• Actual value of arguments are sent to the function

• Change made to formal arguments does not change the actual

arguments.

• Values are actually copied to new formal variables

COMPILED BY RAMESH PRAJAPATI 39

1. Call By Value (Pass By Value)

#include<stdio.h>

int num(int a);

void main(){

int x=3, y;

y = num(x); //pass by value

printf("Value of x = %d and y=%d" ,x,y);

getch();

}

int num(int i){

i++;

return i;

}

COMPILED BY RAMESH PRAJAPATI 40

2. Call By Reference (Pass By Reference)

• Address of arguments are sent to the function

• Any change made to the formal arguments will be reflected

on actual arguments.

• Values are not copied to new formal variables instead all

arguments points to same values.

• Used to return more than one variables from function

COMPILED BY RAMESH PRAJAPATI 41

2. Call By Reference (Pass By Reference)

#include<stdio.h>
int num(int *a);
void main(){
int x=3, y;
y = num(&x); //pass by reference
printf("Value of x = %d and y=%d" ,x,y);
getch();
}

int num(int *i){
*i++;
return *i;
}

COMPILED BY RAMESH PRAJAPATI 42

pass by value vs pass by reference

Basis Pass by Value Pass by Reference

Return

value

Function cannot return more than

one value at a time.

Function can return more than one

value at a time

Concept

of pointer
No concept of pointer used Concept of pointer used

Change in

value

Changes made in formal arguments

do not change the actual argument

Changes made in formal arguments will

be reflected in the actual arguments

Value

send
Copy of data is sent to the function

Memory address of data is sent to the

function

Example Area (l , b); Area (&l, &b)

COMPILED BY RAMESH PRAJAPATI 43

Storage class

• each data types has one more attribute known as

storage class which specifies lifetime and visibility of

the variable

• visibility or scope is the accessibility of variable

• proper use of storage class makes program fast and

efficient

• syntax: storage_class data_type variable_name

COMPILED BY RAMESH PRAJAPATI 44

Types of storage class

• 1. auto : default variable

• 2. external : global variable

• 3. static : local variable

• 4. register : variable stored inside a register

COMPILED BY RAMESH PRAJAPATI 45

1. Auto

• all variables declared inside a function without any storage

class are called automatic variables.

• 'auto' keyword can be used to declare such variables but

not compulsory

• also called local or internal variables

• initially takes garbage value by default

• initialized when program starts and destroyed after

completion

• can't access local variables outside function

• e.g. auto int i;

COMPILED BY RAMESH PRAJAPATI 46

2. External

• also called global variables

• declared above main function or outside function

• initial value of external variable is zero

• 'extern' keyword is specified in declaration

• memory is allocated at the time of definition

• e.g. extern int i;

COMPILED BY RAMESH PRAJAPATI 47

3. Static

• static is local variable which is capable of returning a

value even when control is transferred to the function

call

• static variables have initial value zero and initialized

only once on its lifetime.

• e.g. static int count = 1;

COMPILED BY RAMESH PRAJAPATI 48

4. Register

• register class can be applied only to local variables

• scope, lifetime and initial value of register variable is

same as auto variables

• stored in CPU registers

• can be accessed much faster than others

• 'register' keyword is used

• e.g. register int a;

COMPILED BY RAMESH PRAJAPATI 49

Concept Of Recursion

• Recursion is the process by which a function calls

itself repeatedly until some specified condition has

been satisfied.

• it makes the code simple and easy to understand

• code execution may be slow and program execution

may enter into infinite loop if proper condition is not

specified

• there exists non recursive function for every recursive

function

COMPILED BY RAMESH PRAJAPATI 50

Concept Of Recursion

• To be recursive the conditions should be satisfied

• function must be recursive in nature

• there must be stopping condition

eg. void abc(){

.....

abc();

}

COMPILED BY RAMESH PRAJAPATI 51

• //Program to find the factorial
#include<stdio.h>
#include<conio.h>
int fact(int);
void main(){
int n;
printf("Enter a number");
scanf("%d",&n);
printf("Factorial of number is %d",fact(n));
getch();
}
int fact(int n){
if(n==0){
return 1;
}
else{
return n*fact(n-1);
}

COMPILED BY RAMESH PRAJAPATI 52

Structures
• Structure is a user defined data types that stores different data

types of logically related data whereas array is collection of

similar data types.

• Each member must be unique

• No storage class can be used or attached with member

• Can not initialize member variables

• No memory is allocated for structure before declaring variable

• Capable of storing heterogeneous data

• Used to manage database

• Program becomes systematic and efficient

COMPILED BY RAMESH PRAJAPATI 53

Defining Structure
struct structureName

{

datatype member1;

datatype member2;

......

datatype memberN;

} variable1, variable2;

// or

struct structureName variable1, variable2;
COMPILED BY RAMESH PRAJAPATI 54

Structure Example
struct student

{

char name[20]; //20 bytes

int roll; //2 bytes

float marks; //4 bytes

}; //total size = 20+2+4 =26 bytes

struct student s1, s2, s3;

COMPILED BY RAMESH PRAJAPATI 55

accessing Structure member
• for accessing structure member a dot(.) operator is

used which is also known as the period or

membership operator

• syntax:

structureVariable.member

e.g.

s1.name;

s1.roll;

s1.marks;
COMPILED BY RAMESH PRAJAPATI 56

Initialization of Structure Variables
struct student
{

char name[20]; //20 bytes
int roll; //2 bytes
float marks; //4 bytes

}; //total size = 20+2+4 =26 bytes
struct student s1={"Ram", 4, 55.6};

OR
s1.name = "Ram";
s1.roll = 4;
s1.marks = 55.6;

COMPILED BY RAMESH PRAJAPATI 57

Classwork
• Write a program that accepts book title, isbn number,

author, price of a book and show the details using

structure.

• Write a program that accepts name, roll, marks,

contact number of student, store them in structure and

show them.

COMPILED BY RAMESH PRAJAPATI 58

Array of Structure
• The array of structure is used to store large amount of

similar records

• e.g. store the record of 100 employees

• Array of structure can be declared just like other

• e.g. struct student st[100];

COMPILED BY RAMESH PRAJAPATI 59

Classwork
• Write a program that accepts book title, isbn number,

author, price of 10 books and show the details using

structure.

• Write a program that accepts name, roll, marks,

contact number of 100 students, store them in

structure and show them.

COMPILED BY RAMESH PRAJAPATI 60

Union
• Union is user-defined data type like structure where

member variables share a common memory space

• Variables save the shared memory that is not used.

• Size of Union is the largest data member which can

hold the enough memory space

• In structure, each member has its own memory

location but in Union each member shares the same

memory location

COMPILED BY RAMESH PRAJAPATI 61

Advantages of Union
• Union occupies less memory space compared to

structure saving lots of memory

• Union are very helpful for low level programming

• Same memory can be used differently for different

members of the union

• The last variable can be directly accessed

• Union can also be used for declaring array that can

hold value of different data types

COMPILED BY RAMESH PRAJAPATI 62

Syntax of Union
union unionName{

Datatype member1;

Datatype member2;

Datatype member3;

.....

Datatype memberN;

}

COMPILED BY RAMESH PRAJAPATI 63

Union Example
union student{

int roll; // 2-bytes

char name[30]; // 30-bytes

float marks; // 4-bytes

}

size of union = 30 bytes

size of structure = 36 bytes

COMPILED BY RAMESH PRAJAPATI 64

accessing Union member
• for accessing Union member a dot(.) operator is used

which is also known as the period or membership operator

• We can access only the recently used variables

• syntax:

unionVariable.member

e.g.

s1.name;

s1.roll;

s1.marks;

COMPILED BY RAMESH PRAJAPATI 65

Pointers
• Pointer is a variable that stores the references to

another variable instead of storing the actual value

• Pointer variable contains the memory address of

another variable, object or function.

• Pointer is declared to be specific type depending on

what it points to

• Pointer of various data types can be created such as

integer, character, string, structure or union

COMPILED BY RAMESH PRAJAPATI 66

Pointer Variable
• Pointer variables are declared using the asterisk

symbol * with the data type name and name of pointer

to be declared.

Syntax:

data_type * pointer_variable;

Example:

int *p;

char *ptr;

COMPILED BY RAMESH PRAJAPATI 67

Pointer Variable

COMPILED BY RAMESH PRAJAPATI 68

Benefits of Pointer
• speed up the execution of program

• complex data structures like queues, link, lists, stack, trees can

be easily implemented

• memory can be efficiently utilized

• hardware interpretation is possible

• can interact with operating system

• dynamic memory creation and deletion is possible

• enables to return more than one value from a function

• pointers support dynamic memory allocation (DMA)

• can access memory faster because accessing memory location is

faster than value COMPILED BY RAMESH PRAJAPATI 69

Drawbacks of Pointers
• Pointer variable can not be declared as global variable

because all global variables are initialized zero (0), which

indicates the address 0 of memory

• dynamically allocated memory can not be automatically

released. It will exist till the end of program. It is

programmer's responsibility to release that memory using

free() function which is also called memory leak problem.

• If memory is deleted by dynamic memory allocation (DMA)

but the pointer to the location where it does not exist any

object. It is called dangling pointer.

COMPILED BY RAMESH PRAJAPATI 70

Null Pointer
• Null pointer is a special pointer which "points to

nothing"

• Null pointer points to NULL.

• C Language uses the symbol NULL for this purpose

COMPILED BY RAMESH PRAJAPATI 71

Address (&) and Indirection (*) Operator
1. Address of (&) Operator
• The address of operator (&) will return its operand's address.

This can be done as follows
• int a=5;

• int *p;

• p = &a;

2. Indirection (*) Operator
• It returns the memory address of the operands i.e. indirection

operator can give the actual value of a variable
• int a=5;

• int *p;

• p = &a;

COMPILED BY RAMESH PRAJAPATI 72

Pointer Expression and Assignment
We can perform following operations on pointers
• increment (++)
• decrement (--)

• addition of integer to a pointer (+)

• subtraction of integer from a pointer (-)

• subtraction of pointer from another pointer

• comparison of two pointers

We can not perform following operations on pointers
• addition of two pointers

• multiplication of two pointers

• division of two pointers
COMPILED BY RAMESH PRAJAPATI 73

1. Incrementing a pointer
• any pointer variable when incremented (++) points to

the next memory location of its type.

• pointer gets incremented according to the data type of

the value it stores

e.g. int *p, a=5;

p=&a;

p++; //increases address pointed by p by 2 bytes

(*p)++; //increases the value of a by 1;

COMPILED BY RAMESH PRAJAPATI 74

2. Decrementing a pointer
• any pointer variable when decremented (--) points to

the previous memory location of its type.

• pointer gets decremented according to the data type of

the value it stores

e.g. int *p, a=5;

p=&a;

p--; //decreases address pointed by p by 2 bytes

(*p)--; //decreases the value of a by 1;

COMPILED BY RAMESH PRAJAPATI 75

3. Addition of Integer to a pointer
• Addition of integer number to a pointer is allowed.

• Addition of any integer number to a pointer increases

the address in pointer by that amount

e.g. int *p, a = 5;

p=&a;

p = p+2;

//increases the address pointed by pointer p by 4 bytes

COMPILED BY RAMESH PRAJAPATI 76

4. Subtraction of Integer to a pointer
• Subtraction of integer number to a pointer is allowed.

• Subtraction of any integer number to a pointer

decreases the address in pointer by that amount

e.g. int *p, a = 5;

p=&a;

p = p-2;

//decreases the address pointed by pointer p by 4 bytes

COMPILED BY RAMESH PRAJAPATI 77

5. Subtraction of one pointer from another
• A pointer variable can be subtracted from another pointer

variable only if they point to the same data type

• If two pointers are of different data type then type mismatch

occurs.

int *pa, *pb;

int a=5, b=15, c, d;

pa=&a;

pb=&b;

c = *pa - *pb; //subtracts values pointed by pa & pb

d = pa - pb; //subtracts addresses of pa & pb pointers

COMPILED BY RAMESH PRAJAPATI 78

6. Comparison of two pointers
• Comparison of two pointer variables is possible only if the two pointer

variables are of the same type.
• They can check equality and inequality
• Result is TRUE if both the pointers point to the same location or address

and result if FALSE if they point to different location in the memory
int *pa, *pb;
int a=5;
pa=&a;
pb=&a;
if(pa==pb){
printf("Both pointer points to same location");
}else{
printf("Two pointers points to different location");
}

COMPILED BY RAMESH PRAJAPATI 79

Classwork
1. Write a program to enter any two numbers and find

their sum using pointers.

2. Write a program to display the array elements using

pointer

COMPILED BY RAMESH PRAJAPATI 80

File Handling
• A data file is any file containing information but not

code only meant to be read or write

• C program can be used to read or write files permanently

• Data is lost when data is stored using variables after program

termination

• Variables hold data on Primary memory only which is volatile

in nature

• Data must be stored in permanent secondary memory if it is

needed later

• It is difficult to handle large amount of data using variables

only

COMPILED BY RAMESH PRAJAPATI 81

File Handling
• File handling in C enables us to create, update, read and

delete files stored on the local file system through our C

program

• Operations that can be performed on a file are:

• Creation of the new file

• Opening an existing file

• Reading from the file

• Writing to the file

• Deleting the file

COMPILED BY RAMESH PRAJAPATI 82

Needs for file handling in C program
• Helps in permanent storage of data or information

generated after running the program

• Large amount of data can be stored for later use

• Easy to transfer contents of a file from one system to

other

• Saves lot of time as we don't need to enter data from

keyboard

• Files are easily portable to carry from one computer to

another

COMPILED BY RAMESH PRAJAPATI 83

Types of files
• There are two types of files
1. Text files
◦ Text files contains text information like alphabets, digits, special symbols,

punctuation marks which are easily readable

◦ The ASCII codes are stored in these files

◦ Text file has the .txt extension

◦ Text files are used for files containing plain text that can be opened and viewed

with simple text editors like notepad

2. Binary files
◦ Binary files can be interpreted and understood by the computer and is not always

printable on screen

◦ Binary files have .dat extension

◦ Binary files are often used for all kinds of objects to store data that is not just plain

text

COMPILED BY RAMESH PRAJAPATI 84

End of File (EOF)
• EOF is a sign or symbol that the end of file is reached

and there are no more data to be read

• EOF is condition where no more data can be read from

data source

• Character reading functions such as getc(), getch() or

getchar() will return a value of EOF to indicate that an

end-of-file condition has occurred. The value returned

is mostly -1

COMPILED BY RAMESH PRAJAPATI 85

Sequential Vs Random Access File

S.N. Sequential Access Random Access

1.

The computer system reads or writes

information to the file sequentially,

starting from the beginning of the file

and going on step by step

The computer system can read or write

information anywhere in the data file

2. File is accessed slowly File is accessed quickly

3.
Sequential Files must search through

each and every file

Random files need not to search every

files

4.
Insertion and updating of data is

difficult
Insertion and updating of data is easy

5. fread(), fscanf() function is used fseek(), ftell(), rewind() functions are usedCOMPILED BY RAMESH PRAJAPATI 86

File Manipulation Function
S.N. Functions Descriptions

1. fopen() This function opens new or existing file

2. fprintf() This function write data into the file

3. fscanf() This function reads the data from the file

4. fputw() This function writes an integer value to file

5. fgetw() This function reads an integer value from a file

6. fputc() This function writes a character into a file

7. fgetc() This function reads a character from a file

COMPILED BY RAMESH PRAJAPATI 87

File Handling Functions
fopen()

• It is used to open a file to perform operations such as

reading, writing etc.

• In a C program, we declare a file pointer and use it

• The function creates new file if the mentioned file name does

not exist.

Syntax:

FILE *fp;

fp = fopen("filename", "file_openingmode");

Example:

fp = fopen("book.txt", "r");

COMPILED BY RAMESH PRAJAPATI 88

File Handling Functions
fprintf()

• This function writes any types of data(integer, float,

string, char etc) into a file pointed by fp pointer.

• This function is same as printf() function but instead of

writing data on monitor, it writes the content to the file

• It has one extra parameter which points to a file

Example:

FILE *fp;

fp = fopen("book.txt", "w");

fprintf(fp, "computer science");

COMPILED BY RAMESH PRAJAPATI 89

File Handling Functions
fscanf()

• This function is same as scanf() function but it has one

extra parameter that points to a file

• Instead of reading the data from a standard keyboard, it

reads the data from memory

Example:

FILE *fp;

fp = fopen("book.txt", "r");

fscanf(fp, "%d", &a);

COMPILED BY RAMESH PRAJAPATI 90

File Handling Functions
putw()

• It is used to write an integer into a file

Syntax:

putw(i, fp);where i is integer value & fp is file pointer

Example:

FILE *fp;

int i=4;

fp = fopen("book.txt", "w");

putw(i, fp);

COMPILED BY RAMESH PRAJAPATI 91

File Handling Functions
getw()

• It reads an integer value from a file pointed by file

pointer

Syntax:

getw(fp);where fp is file pointer

Example:

FILE *fp;

int i;

fp = fopen("book.txt", "r");

i = getw(fp);

COMPILED BY RAMESH PRAJAPATI 92

File Handling Functions
fgetc()

• It returns a single character from the file

• It gets a character from the stream

• It returns EOF at the end of file

Syntax:

fgetc(fp);where fp is file pointer

Example:

FILE *fp;

fp = fopen("book.txt", "r");

c = fgetc(fp);

COMPILED BY RAMESH PRAJAPATI 93

File Handling Functions
fputc()

• It is used to write a single character into file

• It outputs a character to a stream

Syntax:

fputc(c, fp);where c is character & fp is file pointer

Example:

FILE *fp;

fp = fopen("book.txt", "w");

fputc('a',fp);

COMPILED BY RAMESH PRAJAPATI 94

File Handling Functions
fclose()

• It closes the file that is being pointed by file pointer fp

Syntax:

fclose(filename or file pointer)

Example:

FILE *fp;

fp = fopen("book.txt", "w");

fputc('a',fp);

fclose(fp);

COMPILED BY RAMESH PRAJAPATI 95

Creating a file
• To work with file, we must first create it

• To create a file

Syntax:

FILE *fp;

FILE is defined in the stdio.h header file

fp is a pointer variable

COMPILED BY RAMESH PRAJAPATI 96

Opening a file
• A file must be open before any READ/WRITE

operations can be performed on that file

• The process of establishing a connection between the

program and file is called opening a file

• To open a file fopen() function is used

Syntax:

pointer_variable = fopen("filename.extension","file_mode");

Example:

fp = fopen("data.txt","w");

COMPILED BY RAMESH PRAJAPATI 97

File Opening Modes
Mode Meaning Description

r Reading
this mode opens a file for reading only. The file to be opened must exist. If file is

opened successfully fopen() loads into memory otherwise returns NULL

w Writing

This mode opens an empty file for writing only. If the file already exists the

previous file will be erased and new file is created otherwise it will simply create

new file

a Append
This mode opens a file for appending (i.e. adding the new information at the

last). It file does not exist, new file will be created.

w+ Write & Read
This mode opens a file for both writing and reading. If file is already exist,

previous data will be erased.

r+ Read & Write
This mode opens a file for both reading and writing. If the file to be opened

exist, previous data will not be erased. This mode is also called update mode

a+ Append & Read
this mode opens a file ofr both reading and appending. A new file is created if

the file does not exist, We cannot modify existing data in this mode.
COMPILED BY RAMESH PRAJAPATI 98

Closing a file
• The file that was open must be closed whe no more

operations are to be performed on it

• After closing file, the connection between file and a

program is lost

• It is good to close a file when there is no more

operations to be performed on a file

Syntax:
fclose(filename or file pointer);

Example:

fclose(fp);

COMPILED BY RAMESH PRAJAPATI 99

Example
#include<stdio.h>

#include<conio.h>

void main(){

FILE *fp;

fp = fopen("greeting.txt","w");

fprintf(fp, "Good Morning all");

fclose();

getch();

}

COMPILED BY RAMESH PRAJAPATI 100

Thank you
END OF UNIT 4

COMPILED BY RAMESH PRAJAPATI 101

	Slide 1: Unit 4
	Slide 2: Review of C Programming
	Slide 3: Review: Features of C
	Slide 4: Review: Structure of C
	Slide 5: Review: Preprocessor and Header files
	Slide 6: Review: C character set
	Slide 7: Review: Use of comments
	Slide 8: Review: Identifiers, Keywords & Tokens
	Slide 9: Review: Basic Data Types in C
	Slide 10: Review: Constant and Variables
	Slide 11: Review: Type of specifier
	Slide 12: Review: Operators and Expressions
	Slide 13: Review: Operators
	Slide 14: Review: Input/output (I/O) functions
	Slide 15: Review: Input/output (I/O) functions
	Slide 16: Review: Control Statements
	Slide 17: Review: Control Statements
	Slide 18: Review: Control Statements
	Slide 19: Review: Control Statements
	Slide 20: Functions
	Slide 21: Functions
	Slide 22: advantages of using function
	Slide 23: Library vs user defined function
	Slide 24: advantages of Library function
	Slide 25: Self Study
	Slide 26: User Defined Function
	Slide 27: User defined function
	Slide 28: characteristics of user defined function
	Slide 29: advantages of user defined function
	Slide 30: User defined Vs library
	Slide 31: Types of user defined functions
	Slide 32: self study
	Slide 33: 1. No Return Type & No Arguments
	Slide 34: 2. No Return Type But Arguments
	Slide 35: 3. With Return Type But No Arguments
	Slide 36: 2. With Return Type and Arguments
	Slide 37: Accessing Function By Passing Values
	Slide 38: Parameter Passing Mechanism
	Slide 39: 1. Call By Value (Pass By Value)
	Slide 40: 1. Call By Value (Pass By Value)
	Slide 41: 2. Call By Reference (Pass By Reference)
	Slide 42: 2. Call By Reference (Pass By Reference)
	Slide 43: pass by value vs pass by reference
	Slide 44: Storage class
	Slide 45: Types of storage class
	Slide 46: 1. Auto
	Slide 47: 2. External
	Slide 48: 3. Static
	Slide 49: 4. Register
	Slide 50: Concept Of Recursion
	Slide 51: Concept Of Recursion
	Slide 52
	Slide 53: Structures
	Slide 54: Defining Structure
	Slide 55: Structure Example
	Slide 56: accessing Structure member
	Slide 57: Initialization of Structure Variables
	Slide 58: Classwork
	Slide 59: Array of Structure
	Slide 60: Classwork
	Slide 61: Union
	Slide 62: Advantages of Union
	Slide 63: Syntax of Union
	Slide 64: Union Example
	Slide 65: accessing Union member
	Slide 66: Pointers
	Slide 67: Pointer Variable
	Slide 68: Pointer Variable
	Slide 69: Benefits of Pointer
	Slide 70: Drawbacks of Pointers
	Slide 71: Null Pointer
	Slide 72: Address (&) and Indirection (*) Operator
	Slide 73: Pointer Expression and Assignment
	Slide 74: 1. Incrementing a pointer
	Slide 75: 2. Decrementing a pointer
	Slide 76: 3. Addition of Integer to a pointer
	Slide 77: 4. Subtraction of Integer to a pointer
	Slide 78: 5. Subtraction of one pointer from another
	Slide 79: 6. Comparison of two pointers
	Slide 80: Classwork
	Slide 81: File Handling
	Slide 82: File Handling
	Slide 83: Needs for file handling in C program
	Slide 84: Types of files
	Slide 85: End of File (EOF)
	Slide 86: Sequential Vs Random Access File
	Slide 87: File Manipulation Function
	Slide 88: File Handling Functions
	Slide 89: File Handling Functions
	Slide 90: File Handling Functions
	Slide 91: File Handling Functions
	Slide 92: File Handling Functions
	Slide 93: File Handling Functions
	Slide 94: File Handling Functions
	Slide 95: File Handling Functions
	Slide 96: Creating a file
	Slide 97: Opening a file
	Slide 98: File Opening Modes
	Slide 99: Closing a file
	Slide 100: Example
	Slide 101: Thank you

