Unit 4

PROGRAMMING IN C

Review of C Programming

e C Is a general-purpose programming language used to
write programs

e High level language and easy to use

e Base programming language for other

e Provides core concept of loop, array, string, function,
structure, file handling etc.

Review: Features of C

e Simple to learn and understand

e Simple in size only having 32 keywords
e Portable or machine independent

e Provides lot of inbuilt functions

o Faster execution

e Extensible

e Reusable

Review: Structure of C

#include <stdio.h>
#include<conio.h>

void main(){
Int X=5;
printf("value of x = %d", x);
getch();

}

Review: Preprocessor and Header files

e Header files are those files that are defined to be
Included at the beginning of program that contains
definition of data types and declaration of variables
used by function

e Functions and variables are defined In-built In
header files

e EX. stdio.h, conio.h, math.h, process.h etc

Review: C character set

e Alphabets: A-Z, a-z
e Numbers: 0-9
e Special characters:

; : { }

\ > < /

Review: Use of commments

e Single Line Comment:
e To comment a single line, we simply place double slashes (//) at beginning
e Single line comment does not have ending slashes
e Eg.//This is single line comment

e Block/Multi Line Comment:
e To comment multiple line or block of lines we use /* as opening and */ as
closing
e \We can comment multiple lines or blocks of line
e It has both opening and closing portion
e EQ. [* This Is our
Multiple line comment */

Review: ldentifiers, Keywords & Tokens

o Basic element recognized by the compiler is known as tokens

o They are text that does not break down into component elements

o Keywords are words that are used in source code I.e. predefined words

o Keywords like int, float, goto, If, else, etc are also called tokens

o ldentifiers are the names of variable or functions that identifies some
value or procedure

Review: Basic Data Types in C

o There are basically two types of data
1. Primary data types

o Char . for character types of data
o Int . for whole number integer types of data
> Float . for real number with decimal point of data
> Double . for large or lengthy numbers
> void . for NULL or empty type of data
2. Secondary data types
o Array . collection of similar objects or data elements
> Pointer . holds memory location address point
o Structure . user defined collection of various data types
> Union . similar to structure but saves memory usage
> Enum . similar to array but with prefixed values

T
COMPILED BY RAMESH PRAJAPATI 9

Review: Constant and Variables

1. Constant
- A constant iIs a fixed value which cannot be changed during the program
execution
> Constant can be defined using preprocessor directives
> e.g. #define Pl 3.14;
2. Variable
> The value of variable can be changed during program execution.
> Variable can hold values at a time
°e.g.Intx=2;

Review: Type of specifier

e The Input and output data are formatted by specific pattern
o These patterns are generated by using specific tokens in C programs
o Tokens that are used to format data are called specifiers

o Some of the specifiers are :

1. Escape sequence

\n \t \v \a
2. Format specifier

%d %c %f %l

Review: Operators and Expressions

o An operator i1s a sign or symbol, which performs an operation or
evaluation on one or more operands
o Operands are values or variables declared within program

e For an expression: a + b
e here a and b are operands and + Is operator

Operand vs. operator

Dperators

X +y =2

Operands Resulis

Review: Operators

Arithmetic operators ; +
Relational operators ; <
Logical operators ; &&

Assignment operators ; =
Conditional/Ternary operators: 7 :
Bitwise operators ; &

Comma operators : ,

Increment/Decrement operators: ++

Review: Input/output (I/0) functions

 Input/output functions are categorized into following types
1. Formatted 1/O functions

It is an output function that prints a character or string or numeric values on the

printf() screen. It offers %d, %c, %s, %u conversion characters for various data types

— It is an input function that reads the input from keyboard and different data can be
entered like int, float, char, string etc into C program

fprintf() It is an output function that is used to write strings into files

fscanf() It is an input function that is used to read strings from files

s I

COMPILED BY RAMESH PRAJAPATI 14

Review: Input/output (I/0) functions

 Input/output functions are categorized into following types
1. Unformatted 1/O functions

It is an input function which reads only one character at a time without echoing

S (displaying) on screen
It is an input function which reads only one character at a time with echoing
getche()))
(displaying) on screen
putch() It is output function that outputs a single character on the screen
getchar() It is an input function to read character from keyboard
putchar() It is an output function to print a character on the screen
gets() It is an input function that reads a single or multiple words(string) from keyboard

- puts() It is an output function that prints a single or multiple words(string) on screen .

Review: Control Statements

o They define flow of control in a program and enable us to specify order
of Instruction execution.
o Control structures are very core part of programming

e There are 3 basic control structures
1. Sequential Control Structure
2. Decision Control Structure
3. Looping Control Structure

Review: Control Statements

1. Sequential Control Structure

> They are default control structure.

> In sequential control each commands or statements are executed one after
another in sequential fashion

o Statements are executed from the very first line from main function

COMPILED BY RAMESH PRAJAPATI 17

Review: Control Statements

1. Decision Control Structure
- They are used to divert the flow of control/execution on the basis of

condition
If statement
If ... else statement
If ... else if ... else statement
Nested If ... else statement
switch statement

ahkhwbdE

COMPILED BY RAMESH PRAJAPATI 18

Review: Control Statements

1. Looping Control Structure
- They are used to execute statement or block of statement repeatedly for

until certain condition is satisfied.
1. for loop
2. while loop
3. do-while loop

COMPILED BY RAMESH PRAJAPATI 19

Functions

o A function iIs a block of code that performs a specific
task when called.

e There must be at least one function 1.e. main().
Every program in C starts from main() function

o It helps to break down the large and complex
program into small and manageable codes

Functions

e Syntax:
e return_type function_name (parameterl, para2..)

1

function block

advantages of using function

e avolds repetitions of code

e Increases program readability

e divide the large complex codes into small simplex ones
e easy debugging, modification and updating

e easy code organization and reuse

e saves time and effort of programmer

Library vs user defined function

e 1. Library functions/B
e also called built-in fu

e already defined, com

Uilt-in function/Predefined function
nction or pre-defined function

niled and stored 1n headers files

e easier to write and use

e not necessary to declare and define such function
e we can just call wherever and whenever required
e e.g. printf(), scanf(), strlen(), strcpy() etc.

advantages of Library function

e easy to use and are 100% accurate

e each library function performs specific tasks
e reduction In program size

e saves time of development

Self Study

e List out the bullt-in functions defined in following header

files
e stdio.h

e math.h
e string.h
o stdlib.h
e time.h

e Cctype.h

User Defined Function

e Function written and used by programmers Is called user
defined function

e function must have following characteristics
e function prototype (declaration)

o function body (definition)
e function call
e return statement (optional)

User defined function

e Syntax
return_type function_name (argl, argz2, ...)

{

function_body

characteristics of user defined function

e function name must be unique

e can perform task without interfering other I.e. independent
e function can receive value from the calling program

e can pass and return values to and from function

e not executed until callec
e can be called multiple times once defined

advantages of user defined function

e code can be reused multiple times

e large complex code can be divided into small simple sub
programs

e easy to debug and maintain

e makes easy to understand logic

e avolids re-writing of codes

User defined Vs library
Basis __|Userdefinedfunction _|Libraryfunction

function created by user as their own can not be created by user as their own

creation requirements

storage not stored in library or header file stored in header or library files

renaming name can be changed name can not be changed

function user must declare and define declaration and definition is not

declaration these function required

function not pre defined pre-defined in header files

definition

function call part of program, compiled at part of header files compiled at runtime
runtime

= example sum(), calculate(2,3) etc printf(), scanf(), getch(), sqrt() etc =

Types of user defined functions

1. With no return type and with no arguments
2. With no return type but with arguments

3. With return type but with no arguments

4. With return type and with arguments
Question:

Write a C Program that accepts radius and displays area or
circle using different types of functions.

self study

1. No Return Type & No Arguments

#include<stdio.h>
#include<conio.h>

void calcArea();

void main(){
calcArea();
getch();

void calcArea(){
float a, r;
printf("Enter radius: ");
scanf("%f", &r);
a = 3.14*r*r;
printf("Area of circle is: %f", a);

2. No Return Type But Arguments

#include<stdio.h> void calcArea(float r){
#include<conio.h> float a;

void calcArea(float r); a = 3.14*r*r;

volid main(){ printf("Area of circle i1s: %f", a);
float r; }

printf(" Enter radius: "');
scanf("'%f", &r);
calcArea(r);

getch();

COMPILED BY RAMESH PRAJAPATI

3. With Return Type But No Arguments

#include<stdio.h> float calcArea(){
#include<conio.h> floatr, a;

float calcArea(); printf(" Enter radius: ");
void main(){ scanf("%f", &r);

float a; a = 3.14*r*r;

a = calcArea(); return a;

printf("Area of circle is: %f", a); }

getch();

¥

2. With Return Type and Arguments

#include<stdio.h> float calcArea(float r){
#include<conio.h> float a:

flo_at calf:Area(roat); a = 3.14*r*r:

void main(){ _

float a. r- return a;

printf("" Enter radius: "'); }

scanf("%f", &r);

a = calcArea(r);

printf("Area of circle is: %f", a);
getch();

¥

Accessing Function By Passing Values

e Arguments or parameters are used to receive required values
from the function call

e Number of arguments must be matched with the called and
calling function

o Actual parameters: that appear in a function call

o Formal parameters: that appear in function declaration

Parameter Passing Mechanism

e There are two parameter passing mechanism
1. Call by Value (pass by value)

2. Call by Reference (pass by reference)

1. Call By Value (Pass By Value)

o Actual value of arguments are sent to the function
nge made to formal arguments does not change the actual
ments.

e Cha
argL

e Valu

es are actually copied to new formal variables

1. Call By Value (Pass By Value)

#include<stdio.h>
Int num(int a);
void main(){
Int X=3, V;
y = num(x); //pass by value
printf(*"Value of x = %d and y=%d" ,x,y);
getch();

¥

Int num(int 1){
I++:

return i;

¥

COMPILED BY RAMESH PRAJAPATI 40

2. Call By Reference (Pass By Reference)

o Address of arguments are sent to the function

e Any change made to the formal arguments will be reflected
on actual arguments.

e Values are not copied to new formal variables instead all
arguments points to same values.

o Used to return more than one variables from function

2. Call By Reference (Pass By Reference)

#include<stdio.h>

Int num(int *a);

void main(){

Int Xx=3,V;

y = num(&x); //pass by reference
printf("Value of x = %d and y=%d" ,x,y);
getch();

¥

Int num(int *1){
4+
return *I;

}

pass by value vs pass by reference

m Pass by Value Pass by Reference

Return Function cannot return more than Function can return more than one
value one value at a time. value at a time
Concgpt No concept of pointer used Concept of pointer used
of pointer
Change in Changes made in formal arguments Changes made in formal arguments will
value do not change the actual argument be reflected in the actual arguments
Val . . Memor r f i n h
alue Copy of data is sent to the function © 9 y address of data is sent to the
send function
Example Area (I, b); Area (&l, &b) _

Storage class

e each data types has one more attribute known as
storage class which specifies lifetime and visibility of
the variable

o Visibility or scope Is the accessibility of variable

e proper use of storage class makes program fast and
efficient

e syntax: storage_class data_type variable name

Types of storage class

e 1. auto : default variable

o 2. external : global variable

o 3. static : local variable

e 4. register : variable stored inside a register

1. Auto

o all variables declared inside a function without any storage
class are called automatic variables.

e 'auto’ keyword can be used to declare such variables but
not compulsory

e also called local or internal variables

o Initially takes garbage value by default

e Initialized when program starts and destroyed after
completion

e can't access local variables outside function

e e.¢. auto Int I;

2. External

e also called global variables

e declared above main function or outside function
e Initial value of external variable Is zero

o 'extern’ keyword is specified in declaration

e memory Is allocated at the time of definition

e £.g. extern Int I,

3. Static

e static Is local variable which is capable of returning a
value even when control is transferred to the function
call

e static variables have Initial value zero and Initialized
only once on Its lifetime.

e €.0. static int count = 1,

4. Register

e register class can be applied only to local variables

e scope, lifetime and initial value of register variable Is
same as auto variables

o stored in CPU registers

e can be accessed much faster than others

o 'register' keyword Is used

e €.0. register int a;

Concept Of Recursion

e Recursion Is the process by which a function calls
itself repeatedly until some specified condition has
been satisfied.

e It makes the code simple and easy to understand

e code execution may be slow and program execution
may enter into infinite loop If proper condition Is not
specified

e there exists non recursive function for every recursive
function

Concept Of Recursion

e To be recursive the conditions should be satisfied
e function must be recursive In nature

e there must be stopping condition
eg. void abc(){

e //Program to find the factorial
#include<stdio.h>

#include<conio.h>

Int fact(int);

void main(){

Int n;

printf("Enter a number");

scanf("%d",&n);

printf("Factorial of number is %d",fact(n));
getch();

Int fact(int n){
If(n==0){
return 1;

¥

else{
return n*fact(n-1);

¥

COMPILED BY RAMESH PRAJAPATI 52

Structures

e Structure Is a user defined data types that stores different data
types of logically related data whereas array Is collection of
similar data types.

e Each member must be unique

e No storage class can be used or attached with member

e Can not initialize member variables

e No memory Iis allocated for structure before declaring variable

o Capable of storing heterogeneous data

o Used to manage database

e Program becomes systematic and efficient

Defining Structure
struct structureName

{

datatype memberl;
datatype member2;

datatype memberN;
} variablel, variable2;

/] or
struct structureName variablel, variable2:

Structure Example
struct student

{
char name|[20]; /120 bytes
Int roll; /12 bytes
float marks; /14 bytes
¥ /Itotal size = 20+2+4 =26 bytes

struct student s1, s2, s3;

accessing Structure member

o for accessing structure member a dot(.) operator Is
used which Is also known as the period or
membership operator

e Syntax:

structureVariable.member

e.g.
sl.name;
sl.roll:

s1l.marks:

Initialization of Structure Variables

struct student
{
char name[20]; /120 bytes
Int roll; /12 bytes
float marks; /14 bytes
} [ltotal size = 20+2+4 =26 bytes
struct student s1={"Ram", 4, 55.6};

OR

sl.name = "Ram'™:
sl.roll = 4:
s1l.marks = 55.6;

Classwork

o Write a program that accepts book title, isbn number,
author, price of a book and show the details using

structure.

e Write a program that accepts name, roll, marks,
contact number of student, store them In structure and
sho

w them.

Array of Structure

e The array of structure Is used to store large amount of
similar records

e ¢.0. store the record of 100 employees

o Array of structure can be declared just like other

e .9. struct student st[100];

Classwork

o Write a program that accepts book title, isbn number,
author, price of 10 books and show the details using

structure.

e Write a program that accepts name, roll, marks,
contact number of 100 students, store them In
structure and show them.

Union

e Union 1s user-defir
member variables s

ed data type like structure where
nare a common memory space

e Variables save the s

nared memory that is not used.

e Size of Union Is the largest data member which can
hold the enough memory space

e In structure, each

member has Its own memory

location but In Union each member shares the same
memory location

Advantages of Union

e Union occupies less memory space compared to
structure saving lots of memory

e Union are very helpful for low level programming

e Same memory can be used differently for different
members of the union

e The last variable can be directly accessed

e Union can also be used for declaring array that can
hold value of different data types

Syntax of Union

union unionName{
Datatype memberl;
Datatype member2;
Datatype member3;

Datatype memberN;

Union Example
union student{

Int roll; /] 2-bytes
char name|[30]; [/ 30-bytes
float marks; Il 4-bytes

}

size of union = 30 bytes
size of structure = 36 bytes

accessing Union member

o for accessing Union member a dot(.) operator Is used
which is also known as the period or membership operator
e \We can access only the recently used variables
e syntax:
unionVariable.member

e.g.

sl.name;
sl.roll:
s1l.marks:

Pointers

e Pointer I1s a variable that stores the references to
another variable instead of storing the actual value

e Pointer variable contains the memory address of
another variable, object or function.

e Pointer Is declared to be specific type depending on
what It points to

e Pointer of various data types can be created such as
Integer, character, string, structure or union

Pointer Variable

e Pointer variables are declared using the asterisk
symbol * with the data type name and name of pointer
to be declared.

Syntax:

data_type * pointer_variable;

Example:

Int *p;

char *ptr;

Pointer Variable

1001 2047
50 — 1001
var ptr

(normal variable) (pointer)

Benefits of Pointer

o speed up the execution of program

e complex data structures like queues, link, lists, stack, trees can
be easily implemented

e memory can be efficiently utilized

e hardware interpretation Is possible

e can Interact with operating system

e dynamic memory creation and deletion is possible

e enables to return more than one value from a function

e pointers support dynamic memory allocation (DMA)

e can access memory faster because accessing memory location Is

Drawbacks of Pointers

e Pointer variable can not be declared as global variable
because all global variables are initialized zero (0), which
Indicates the address 0 of memory

e dynamically allocated memory can not be automatically
released. It will exist till the end of program. It Is
programmer's responsibility to release that memory using
free() function which is also called memory leak problem.

o If memory is deleted by dynamic memory allocation (DMA)
but the pointer to the location where i1t does not exist any
object. It Is called dangling pointer.

Null Pointer

o Null pointer iIs a special pointer which "points to
nothing"

e Null pointer points to NULL.

e C Language uses the symbol NULL for this purpose

Address (&) and Indirection (*) Operator

1. Address of (&) Operator
e The address of operator (&) will return its operand's address.
This can be done as follows
e Int a=b;
o INnt*p;
° p=&a;
2. Indirection (*) Operator
e |t returns the memory address of the operands I.e. indirection
operator can give the actual value of a variable
e Int a=h;
e Int*p;

Pointer Expression and Assignment

We can perform following operations on pointers

e Increment (++)

e decrement (--)

e addition of integer to a pointer (+)

e subtraction of integer from a pointer (-)

e subtraction of pointer from another pointer
e comparison of two pointers

We can not perform following operations on pointers
e addition of two pointers
o multiplication of two pointers

e division of two Eointers

1. Incrementing a pointer

e any pointer variable when incremented (++) points to
the next memory location of its type.
e pointer gets incremented according to the data type of
the value It stores
e.g. Int *p, a=5;
p=&a;
p++; //increases address pointed by p by 2 bytes
(*p)++; //increases the value of a by 1,

2. Decrementing a pointer

e any pointer variable when decremented (--) points to
the previous memory location of its type.
e pointer gets decremented according to the data type of
the value It stores
e.g. Int *p, a=b;
p=&a;
p--; //decreases address pointed by p by 2 bytes
(*p)--; //decreases the value of a by 1,

3. Addition of Integer to a pointer

o Addition of integer number to a pointer is allowed.
o Addition of any integer number to a pointer increases
the address In pointer by that amount
e.g. Int *p, a=>5;
p=&a;
p=p+2;
//increases the address pointed by pointer p by 4 bytes

4. Subtraction of Integer to a pointer

e Subtraction of integer number to a pointer is allowed.
e Subtraction of any iInteger number to a pointer
decreases the address in pointer by that amount
e.g. Int *p,a=2>5;
p=&a;
p=p-2;
//decreases the address pointed by pointer p by 4 bytes

5. Subtraction of one pointer from another

o A pointer variable can be subtracted from another pointer
variable only if they point to the same data type

o |f two pointers are of different data type then type mismatch
occurs.

Int *pa, *pb;

Int a=5, b=15, c, d;

pa=&a;

pb=&aMD;

C = *pa - *pb; //subtracts values pointed by pa & pb

d = pa - pb; //subtracts addresses of pa & pb pointers

6. Comparison of two pointers

e Comparison of two pointer variables is possible only if the two pointer
variables are of the same type.

e They can check equality and inequality

o Result iIs TRUE if both the pointers point to the same location or address
and result if FALSE if they point to different location in the memory

Int *pa, *pb;

Int a=5;

pa=&a,

pb=&a;

if(pa==pb){ |

printf("Both pointer points to same location");

telse{

printf("Two pointers points to different location");

}

COMPILED BY RAMESH PRAJAPATI 79

Classwork

1. Write a program to enter any two numbers and find
their sum using pointers.

2. Write a program to display the array elements using
pointer

File Handling

o A data file i1s any file containing information but not

code only meant to be read or write

e C program can be used to read or write files permanently

o Data is lost when data Is stored using variables after program
termination

o Variables hold data on Primary memory only which is volatile
In nature

o Data must be stored In permanent secondary memory If it IS
needed later

o It Is difficult to handle large amount of data using variables
only

File Handling

e File handling in C enables us to create, update, read and
delete files stored on the local file system through our C
program

e Operations that can be performed on a file are:

o Creation of the new file
e Opening an existing file
o Reading from the file

o Writing to the file
o Deleting the file

Needs for file handling in C program

e Helps In permanent storage of data or information
generated after running the program

e Large amount of data can be stored for later use

e Easy to transfer contents of a file from one system to
other

e Saves lot of time as we don't need to enter data from
keyboard

e Files are easily portable to carry from one computer to
another

Types of files

e There are two types of files
1. Text files

(¢]

Text files contains text information like alphabets, digits, special symbols,
punctuation marks which are easily readable

The ASCII codes are stored in these files

Text file has the .txt extension

Text files are used for files containing plain text that can be opened and viewed
with simple text editors like notepad

2. Binary files

(0]

Binary files can be interpreted and understood by the computer and is not always
printable on screen

Binary files have .dat extension

Binary files are often used for all kinds of objects to store data that is not just plain
text

COMPILED BY RAMESH PRAJAPATI 84

End of File (EOF)

e EOF is a sign or symbol that the end of file Is reached
and there are no more data to be read

e EOF Is condition where no more data can be read from
data source

o Character reading functions such as getc(), getch() or
getchar() will return a value of EOF to indicate that an
end-of-file condition has occurred. The value returned
IS mostly -1

Sequential Vs Random Access File

The computer system reads or writes
information to the file sequentially,
starting from the beginning of the file
and going on step by step

2. File is accessed slowly

Sequential Files must search through
each and every file

Insertion and updating of data is
difficult

fread(), fscanf() function is used

The computer system can read or write
information anywhere in the data file

File is accessed quickly

Random files need not to search every
files

Insertion and updating of data is easy

fseek(), ftell(), rewind() functions are used I

File Manipulation Function

1. fopen() This function opens new or existing file

2. fprintf() This function write data into the file

3. fscanf() This function reads the data from the file

4, fputw() This function writes an integer value to file

5. fgetw() This function reads an integer value from a file
0. fputc() This function writes a character into a file

1. fgetc() This function reads a character from a file

COMPILED BY RAMESH PRAJAPATI 87

File Handling Functions

fopen()

e |t IS used to open a file to perform operations such as
reading, writing etc.

e Ina C program, we declare a file pointer and use It

e The function creates new file If the mentioned file name does
not exist.

Syntax:

FILE *fp;

fp = fopen(*'filename", "file_openingmode");
Example:

fp = fopen("book.txt", "'r"');

File Handling Functions
fprintf()
e This function writes any types of data(integer, float,
string, char etc) into a file pointed by fp pointer.
e This function Is same as printf() function but instead of
writing data on monitor, It writes the content to the file
e |t has one extra parameter which points to a file
Example:
FILE *fp;
fp = fopen(*'book.txt", "w");
fprintf(fp, "computer science");

File Handling Functions

fscanf()

e This function iIs same as scanf() function but it has one
extra parameter that points to a file

e Instead of reading the data from a standard keyboard, it

reads the data from memory
Example:

FILE *fp;
fp = fopen("book.txt", "'r");
fscanf(fp, "%d", &a);

File Handling Functions

putw()
o |t IS used to write an integer into a file

Syntax:

putw(l, fp);where 1 Is Integer value & fp is file pointer
Example:

FILE *fp;

Int 1=4,;

fp = fopen("book.txt", "w");

putw(i, Tp);

File Handling Functions

getw()
e |t reads an integer value from a file pointed by file
pointer
Syntax:
getw(fp);where fp is file pointer
Example:
FILE *fp;
Int I;
fp = fopen('book.txt", "'r");
| = getw(Tp);

File Handling Functions

fgetc()
e |t returns a single character from the file
e |t gets a character from the stream
e |t returns EOF at the end of file
Syntax:

fgetc(fp);where fp is file pointer
Example:

FILE *fp;

fp = fopen('book.txt", "'r");

¢ = fgetc(fp);

File Handling Functions
fputc()
e |t Is used to write a single character into file
e |t outputs a character to a stream
Syntax:
fputc(c, fp);where c Is character & fp is file pointer
Example:
FILE *fp;
fp = fopen("book.txt", "w");
fputc(‘a’,fp);

File Handling Functions

fclose()
o |t closes the file that is being pointed by file pointer fp
Syntax:
fclose(filename or file pointer)
Example:
FILE *fp;
fp = fopen(*'book.txt", "w");
fputc(‘a’,fp);
fclose(fp);

Creating a file

e To work with file, we must first create It
e To create a file

Syntax:

FILE *fp;

FILE is defined in the stdio.h header file
fp Is a pointer variable

Opening a file
e A file must be open before any READ/WRITE
operations can be performed on that file
e The process of establishing a connection between the
program and file is called opening a file
e To open a file fopen() function is used

Syntax:

pointer_variable = fopen(“filename.extension"”,"file_mode");
Example:

fp = fopen("data.txt","w");

File Opening Modes

I Reading
i Writing
a Append

w+ Write & Read

r+ Read & Write

at Append & Read

this mode opens a file for reading only. The file to be opened must exist. If file is
opened successfully fopen() loads into memory otherwise returns NULL

This mode opens an empty file for writing only. If the file already exists the
previous file will be erased and new file is created otherwise it will simply create
new file

This mode opens a file for appending (i.e. adding the new information at the
last). It file does not exist, new file will be created.

This mode opens a file for both writing and reading. If file is already exist,
previous data will be erased.

This mode opens a file for both reading and writing. If the file to be opened
exist, previous data will not be erased. This mode is also called update mode

this mode opens a file ofr both reading and appending. A new file is created if
the file does not exist, We cannot modify existing data in this mode.

Closing a file

e The file that was open must be closed whe no more
operations are to be performed on it

o After closing file, the connection between file and a
program Is lost

e It Is good to close a file when there IS no more
operations to be performed on a file

Syntax:

fclose(filename or file pointer);
Example:

fclose(fp);

Example

#include<stdio.h>
#include<conio.h>

volid main(){

FILE *fp;

fp = fopen("greeting.txt","w");
fprintf(fp, "Good Morning all");
fclose();

getch();

¥

Thank you

END OF UNIT 4

	Slide 1: Unit 4
	Slide 2: Review of C Programming
	Slide 3: Review: Features of C
	Slide 4: Review: Structure of C
	Slide 5: Review: Preprocessor and Header files
	Slide 6: Review: C character set
	Slide 7: Review: Use of comments
	Slide 8: Review: Identifiers, Keywords & Tokens
	Slide 9: Review: Basic Data Types in C
	Slide 10: Review: Constant and Variables
	Slide 11: Review: Type of specifier
	Slide 12: Review: Operators and Expressions
	Slide 13: Review: Operators
	Slide 14: Review: Input/output (I/O) functions
	Slide 15: Review: Input/output (I/O) functions
	Slide 16: Review: Control Statements
	Slide 17: Review: Control Statements
	Slide 18: Review: Control Statements
	Slide 19: Review: Control Statements
	Slide 20: Functions
	Slide 21: Functions
	Slide 22: advantages of using function
	Slide 23: Library vs user defined function
	Slide 24: advantages of Library function
	Slide 25: Self Study
	Slide 26: User Defined Function
	Slide 27: User defined function
	Slide 28: characteristics of user defined function
	Slide 29: advantages of user defined function
	Slide 30: User defined Vs library
	Slide 31: Types of user defined functions
	Slide 32: self study
	Slide 33: 1. No Return Type & No Arguments
	Slide 34: 2. No Return Type But Arguments
	Slide 35: 3. With Return Type But No Arguments
	Slide 36: 2. With Return Type and Arguments
	Slide 37: Accessing Function By Passing Values
	Slide 38: Parameter Passing Mechanism
	Slide 39: 1. Call By Value (Pass By Value)
	Slide 40: 1. Call By Value (Pass By Value)
	Slide 41: 2. Call By Reference (Pass By Reference)
	Slide 42: 2. Call By Reference (Pass By Reference)
	Slide 43: pass by value vs pass by reference
	Slide 44: Storage class
	Slide 45: Types of storage class
	Slide 46: 1. Auto
	Slide 47: 2. External
	Slide 48: 3. Static
	Slide 49: 4. Register
	Slide 50: Concept Of Recursion
	Slide 51: Concept Of Recursion
	Slide 52
	Slide 53: Structures
	Slide 54: Defining Structure
	Slide 55: Structure Example
	Slide 56: accessing Structure member
	Slide 57: Initialization of Structure Variables
	Slide 58: Classwork
	Slide 59: Array of Structure
	Slide 60: Classwork
	Slide 61: Union
	Slide 62: Advantages of Union
	Slide 63: Syntax of Union
	Slide 64: Union Example
	Slide 65: accessing Union member
	Slide 66: Pointers
	Slide 67: Pointer Variable
	Slide 68: Pointer Variable
	Slide 69: Benefits of Pointer
	Slide 70: Drawbacks of Pointers
	Slide 71: Null Pointer
	Slide 72: Address (&) and Indirection (*) Operator
	Slide 73: Pointer Expression and Assignment
	Slide 74: 1. Incrementing a pointer
	Slide 75: 2. Decrementing a pointer
	Slide 76: 3. Addition of Integer to a pointer
	Slide 77: 4. Subtraction of Integer to a pointer
	Slide 78: 5. Subtraction of one pointer from another
	Slide 79: 6. Comparison of two pointers
	Slide 80: Classwork
	Slide 81: File Handling
	Slide 82: File Handling
	Slide 83: Needs for file handling in C program
	Slide 84: Types of files
	Slide 85: End of File (EOF)
	Slide 86: Sequential Vs Random Access File
	Slide 87: File Manipulation Function
	Slide 88: File Handling Functions
	Slide 89: File Handling Functions
	Slide 90: File Handling Functions
	Slide 91: File Handling Functions
	Slide 92: File Handling Functions
	Slide 93: File Handling Functions
	Slide 94: File Handling Functions
	Slide 95: File Handling Functions
	Slide 96: Creating a file
	Slide 97: Opening a file
	Slide 98: File Opening Modes
	Slide 99: Closing a file
	Slide 100: Example
	Slide 101: Thank you

