
Unit 6
SOFTWARE PROCESS MODEL

COMPILED BY RAMESH PRAJAPATI 1

Concept of System

• The word “System” is derived from the Greek word

'Systema' which means 'an organized relationship among

components'.

• A collection of components or elements that work

together to perform a specific task is called a system.

• A system is a set of inter-dependent components which

collectively accomplish certain objectives.

• Hence, it is a combination of resources working together

to transform inputs into meaningful and usable outputs.

COMPILED BY RAMESH PRAJAPATI 2

Concept of System

• Computerized information system is an organized set of

hardware, software and different people to transform

given data resources into meaningful and useful

information for end users

• The environment or periphery around the system is called

system environment.

• It affects the system performance.

• The border line around the system that separates the

system with its environment is called system boundary.

COMPILED BY RAMESH PRAJAPATI 3

Concept of System

• Some components of a system are:

• Entity: It is an object of interest which takes part in system.

• Attribute: It is property or characteristics of an entity. It

describes the entity.

• Activity: It represents all activities occurring within the

specified time duration.

• Event: It is instantaneous occurrence of activity that may

change the state of system.

COMPILED BY RAMESH PRAJAPATI 4

Concept of Project

• A project is well-defined tasks, which is a collection of

several operations done in order to achieve a goal.

• Every project creates a unique product or service

• Project can be characterized as:

• Every project may have unique and distinct goal

• Project is not day-to-day operations

• Project comes with a start time and end time.

• Project ends when its goal is achieved

• Project needs sufficient resources in terms of time,

manpower, finance, materials etc.

COMPILED BY RAMESH PRAJAPATI 5

Software Development Process

• Software development process is the process of

creating computer software product.

• It is systematic operation that includes designing,

preparing the specifications, programming, testing,

bug fixing and documentation.

• It offers defined international structure for developer

team to follow in design, creation and maintenance

high quality softwares

COMPILED BY RAMESH PRAJAPATI 6

SDLC Life Cycle

• SDLC stands for Software Development Life Cycle

which consists of a detailed plan describing

development, maintenance, replace, alter and enhance

specific software

• Life cycle defines a methodology for improving the

quality of software and overall development process

• Every phase of SDLC life cycle has its own process

and output that feed into the next phase

COMPILED BY RAMESH PRAJAPATI 7

SDLC Life Cycle

Phases of SDLC

• System study

• System analysis

• System design

• System coding

• System testing

• System implementation

• System maintenance & review

COMPILED BY RAMESH PRAJAPATI 8

Importance of SDLC

• SDLC is a set of steps that serves as the basis for most

system analysis and design methodologies.

• SDLC provides guidelines to follow for completing every

activity in the system development process.

• It is a systematic approach to solve business problems.

• The steps in SDLC enhance management control,

providing a framework for scheduling, budgeting and project

management

• The tools associated with SDLC make it easier to solve the

problem and helps to find errors early
COMPILED BY RAMESH PRAJAPATI 9

Importance of SDLC

Some of the importance of SDLC can be listed as below:

• SDLC is closely linked to structured system analysis and

design.

• SDLC provides an explicit way of structuring i.e. it tells

what to do, when to do, how to do, why to do in particular

order.

• It encompasses some important aspects such as different

phases, procedures, rules, techniques, tools, documentation,

management etc.

• It maintains standards and management control.

COMPILED BY RAMESH PRAJAPATI 10

Importance of SDLC

Some of the importance of SDLC can be listed as below:

• It breaks down entire software development process cycle

which makes easier to evaluate and debug programs

• It provides guideline to complete each activity systematically

for quality system development

• It gives clear idea to developer and save time and cost

• It provides proper documentation so designer can set and use

functions, modules

• It allows to set primarily flexibility and contain a lot of

innovation.

COMPILED BY RAMESH PRAJAPATI 11

Phases of SDLC

System
Development

Phases
Study

Analysis

Design

Development

Testing

Implementation

Maintenance
& Review

COMPILED BY RAMESH PRAJAPATI 12

Phases of SDLC

1. System study

It is the initial and one of the most important stages of

SDLC.

The development team studies the present system and

identifies the drawbacks.

They interact with customers and recognize the problems

of existing system.

The development team proposes the new system based on

this study.

COMPILED BY RAMESH PRAJAPATI 13

Phases of SDLC

1.1 Feasibility Study

After the development team proposes the new system,

the feasibility study is performed in order to

determine whether the new system is feasible or not.

The testing is done on the basis of time, cost,

technical and operational aspects.

A 'feasibility survey report' is made after completion

of feasibility study.

COMPILED BY RAMESH PRAJAPATI 14

Phases of SDLC

1.1 Feasibility study

◦Time feasibility/Schedule feasibility: It is concerned with

the time required for the development of new system.

◦Cost feasibility: It is concerned with the total cost for the

development of new system. It determines whether the

organization can afford the total cost or not.

◦Technical feasibility: It is concerned with specifying

different devices and software for the new system. If all the

technical requirements for the new system can be fulfilled,

then the development of new system will be feasible.
COMPILED BY RAMESH PRAJAPATI 15

Phases of SDLC

1.1 Feasibility study

◦Operational feasibility: It is mainly related with human skills
and administrative process. If the staffs need very long time and
more cost to be trained in the new system, then the new system will
not feasible.

◦Legal feasibility: It is mainly focus to analyze if any violation of
government laws has committed or not.

◦Economic feasibility: This economic feasibility is done to
check whether the system is economic during the operation time on
the client side. If operation cost, manpower cost and other costs are
within the limit then the new system is said to be economically
feasible.

COMPILED BY RAMESH PRAJAPATI 16

Phases of SDLC

2. System Analysis

◦System analysis is a process of collecting accurate data,
understand the process involved, identifying problems and
recommending feasible suggestions for improving the system
functioning.

◦This involves studying the business processes, gathering
operational data, understand the information flow, finding out
bottlenecks and evolving solutions for overcoming the
weakness of the system so as to achieve the goals

◦Development team studies minutely to collect all the drawbacks
and details of information from the users, management and data
processing personnels

COMPILED BY RAMESH PRAJAPATI 17

Phases of SDLC

2. System Analysis

System analyst performs following:

▪Gather, analyze and validate information

▪Define requirements and prototypes for new system

▪Evaluate the alternatives and prioritize the requirements

▪Examine information needs of end-user and enhances the

system goal

▪Software Requirement Specification (SRS) document,

which specifies the software, hardware, functional and

network requirements for the system
COMPILED BY RAMESH PRAJAPATI 18

Phases of SDLC

3. System Design

▪The system design involves designing of a new system

that will meet the requirements identified during system

analysis.

▪It is the most creative and challenging phase of SDLC.

▪System designing involves input design, output design,

file system design, database design etc.

▪System design can be of two types:

▪Logical design

▪Physical design
COMPILED BY RAMESH PRAJAPATI 19

Phases of SDLC

3. System Design

Logical design:

▪Designing the theoretical logics or business logics is

called logic design.

▪The logical requirements of system is defined for the

further designing of the proposed system.

▪It deals with the logical part of the system design.

COMPILED BY RAMESH PRAJAPATI 20

Phases of SDLC

3. System Design

Physical design:

▪The conversion of logical design into designing tools and

techniques is called physical design.

▪It is more detail and complex jobs describing the solution

of problem.

▪Physical design includes algorithms, flowchart,

pseudocodes, decision table, decision tree, ER diagram,

Data flow diagram (DFD) etc.

COMPILED BY RAMESH PRAJAPATI 21

Phases of SDLC

4. System Development

▪After designing the system, the actual system development

process starts.

▪Programmer has to choose suitable programming language

to develop the program.

▪It is programmer's responsibility to detect and fix

syntactical and logical errors.

▪The developed system is compiled and executed.

COMPILED BY RAMESH PRAJAPATI 22

Phases of SDLC

5. System Testing

▪After developing the system, each and every modules are

tested individually and debugged.

▪When the modules are bug free, they are integrated as a

single system and is tested entirely.

▪If the entire system is bug free and can fulfill the

requirements, then it is ready to implement.

▪There are two types of system testing methods:

▪While Box Testing/Glass Box Testing

▪Black Box Testing/Functional Testing
COMPILED BY RAMESH PRAJAPATI 23

Phases of SDLC

5. System Testing

White Box Testing:

▪It is a method of testing software that tests internal
structures or workings of an application.

▪It is a testing technique that examines the program structure
and derives test data from the program logic/code.

▪The other names of glass box testing are clear box testing,
open box testing, logic driven testing or path driven testing
or structural testing.

COMPILED BY RAMESH PRAJAPATI 24

Phases of SDLC

5. System Testing

Black Box Testing:

▪It is a method of software testing that examines the functionality of an
application without peering into its internal structures or workings.

▪Black-box testing is a method of software testing that examines the
functionality of an application based on the specifications.

▪It is also known as Specifications based testing.

▪Independent Testing Team usually performs this type of testing during the
software testing life cycle.

▪This method of test can be applied to each and every level of software
testing such as unit, integration, system and acceptance testing.

COMPILED BY RAMESH PRAJAPATI 25

Phases of SDLC

5. System Testing

Types of Software Testing

1. Unit Testing

2. Integration Testing

3. System Testing

4. Acceptance Testing

COMPILED BY RAMESH PRAJAPATI 26

Phases of SDLC

5. System Testing

A. Unit Testing

▪Unit testing performed on each module or block of code during
development.

▪Unit testing is normally done by the programmer wo writes the code

COMPILED BY RAMESH PRAJAPATI 27

Phases of SDLC

5. System Testing

B. Integration Testing

▪Integration testing is done before, during and after integration of a new
module into the main software package.

▪This involves testing of each individual code module

▪One piece of software can contain several modules which are often
created by several different programmers

▪It is crucial to test each module's effect on the entire program

COMPILED BY RAMESH PRAJAPATI 28

Phases of SDLC

5. System Testing

C. System Testing

▪System testing is done by a professional testing agent on the completed
software product before it is introduced to the market

D. Acceptance Testing

▪Acceptance testing of the product is done by the actual end users.

COMPILED BY RAMESH PRAJAPATI 29

Phases of SDLC

6. System Implementation

▪After the new system is ready, then it is implemented in the
organization.

▪Application is installed or loaded on existing or new hardware
and users are introduced to new system and trained.

▪The software, application, website, portals are launched in this
phase

▪End user or customer will have chance to experience the new
system

COMPILED BY RAMESH PRAJAPATI 30

Phases of SDLC

6. System Implementation

▪System implementation can be done in 3 ways.
▪Direct: Software is directly installed at user's site by replacing the old

system. If the problem persists on new system, the user may face
different problems

▪Parallel: Both new and old system are run in parallel for some time.
After monitoring the new system for a reasonable period of time, if it is
performing well, then the old system is replaced by new one.

▪Phased: System is installed module by module. If one module works
efficiently then only another module is installed otherwise modification
of first module is performed

COMPILED BY RAMESH PRAJAPATI 31

Phases of SDLC

7. System Maintenance & Review

▪When time changes, the requirements of the organization also
gets changed and the system can no longer fulfill it.

▪During maintenance, programmers make changes that users ask
for and modify the system to reflect and support changing
business condition

▪These changes are necessary to keep the system running and
useful.

▪Maintenance is part of SDLC and it is repeated

COMPILED BY RAMESH PRAJAPATI 32

Phases of SDLC

7. Maintenance & Review

Types of Maintenance

1. Corrective Maintenance

2. Adaptive Maintenance

3. Perfective Maintenance

4. Preventive Maintenance

COMPILED BY RAMESH PRAJAPATI 33

Phases of SDLC

Types of Maintenance

A. Corrective Maintenance

▪It corrects the source code of the system for omitting errors

▪It is mainly used to remove errors as corrective measures

▪The main aim of this maintenance is to remove bugs for system

▪So, it is the process of diagnosing and correcting system after
they occur

COMPILED BY RAMESH PRAJAPATI 34

Phases of SDLC

Types of Maintenance

B. Adaptive Maintenance

▪If the surrounding environment for the system is changed then
certain changes should be made.

▪These types of changes in adaptation from rules and regulations
changed, policy of organization changed and from other factors
is called adaptive maintenance

COMPILED BY RAMESH PRAJAPATI 35

Phases of SDLC

Types of Maintenance

C. Perfective Maintenance

▪It makes the system perfect, up-to-date and improve the life of
the system

▪The maintenance is performed to make the system perfect

COMPILED BY RAMESH PRAJAPATI 36

Phases of SDLC

Types of Maintenance

D. Preventive Maintenance

▪It makes the system prevent from failure in future

▪The preventive measurement is applied to the system

▪Its main concern activities are aimed on increasing system
maintainability and prevent problems in future

COMPILED BY RAMESH PRAJAPATI 37

Phases of SDLC

Review

▪A software review is a process or meeting during which a
software product is examined by project personal, managers,
users, customers, user representatives or other interested parties
for comment or approval

▪As a general principle, a technical document is produced
showing the progresses and activities involved in software
development

▪The review process is conducted according to market plan,
contract signed and on the basis of requirement specifications

COMPILED BY RAMESH PRAJAPATI 38

System Analyst

▪System analyst is a chief person in system development team
who analyzes and designs the new computerized information
system.

▪System analyst is the team leader and involves throughout all
phases of the system development life cycle.

▪System analyst is an IT professional who is involved in
analyzing, designing, implementing and evaluating computer
based information system.

▪System analyst must have technical as well as organizational
knowledge.

COMPILED BY RAMESH PRAJAPATI 39

Roles of System Analyst

Change Agent

▪System analyst may be viewed as agent of change.

▪A system is designed to make changes on previous system.

▪System analyst may use different approaches to introduce changes.

Investigator

▪System analyst should investigate the existing system to find the
reasons for its failure.

▪He should extract the problems from existing system and monitor
the program in relation to time, cost and quality.

COMPILED BY RAMESH PRAJAPATI 40

Roles of System Analyst

Architect

▪System analyst should play as architect in interface between user's
logical design requirements and detailed physical system design.

▪He must design detail physical design that fulfills the user's
logical design requirement.

▪The design becomes the blue print for the programmers.

Psychologist

▪System analyst plays role of psychologist when he deals with
users, interpret their thoughts and draw conclusion from these
interactions.

COMPILED BY RAMESH PRAJAPATI 41

Roles of System Analyst

Motivator

▪System analyst plays the role of motivator in order to make the
users accept the new system and make his team members work
together for single goal.

Diplomat

▪System analyst should deal people with diplomacy to improve
acceptance of the system.

COMPILED BY RAMESH PRAJAPATI 42

Responsibilities of System Analyst

Defining requirements:

▪ Being the main person in the system development team, a system

analyst has to define the requirements of the system.

▪ The system analyst may use different fact finding techniques such as

interview, questionnaire, field visit, observations etc. in order to

define the requirements of the users or system.

Prioritizing requirements:

▪ After the requirements have been identified, system analyst need to

set priority among the requirements.

▪ We can't fulfill or deal all the requirements with our limited

manpower and resources.

▪ So it is system analyst's responsibility to prioritize the requirements.
COMPILED BY RAMESH PRAJAPATI 43

Responsibilities of System Analyst

Analysis and Evaluation:

▪ The system analyst has to find out the drawbacks as well as strength

of the current information system.

▪ He has to analyze and evaluate the current system to implement new

system that can eliminate the drawbacks of current system.

Solving problems:

▪ System analyst has to solve all the problems that may occur during

the software development process.

▪ The analyst must study the problems in depth and suggest the most

appropriate solutions to it.

COMPILED BY RAMESH PRAJAPATI 44

Responsibilities of System Analyst

Drawing functional specifications:

▪ System analyst is responsible for drawing the system's specification and

requirements.

▪ The later developed system must meet the specifications of the system.

Design system:

▪ System analyst must design the new information system in an easy and

understandable way for the implementer.

▪ He should design both logical and physical design. The design should be modular

and flexible.

System Evaluation:

▪ System analyst must critically evaluate the new information system in order to

find the drawbacks and errors.

▪ He must decide when to do evaluation and how to do it.

COMPILED BY RAMESH PRAJAPATI 45

Characteristics of System Analyst

Knowledge of organization

▪ System analyst must have sound knowledge of working mechanism,

management structure & functional relationship among departments,

staffs of organization.

▪ He should understand daily operations, rules and regulations of the

particular system

Technical knowledge

▪ System analyst must be familiar and well trained in recent relevant

areas of computing technologies and updated systems

▪ He must be ready to advice development team which addresses

user's need with higher level of efficiency

COMPILED BY RAMESH PRAJAPATI 46

Characteristics of System Analyst

Good interpersonal relation

▪ System analyst must be good listener, diplomat and able to influence

& resolve conflicts, understand needs and motivate team.

Interpersonal communication skill

▪ System analyst must be able to talk intelligently with high level

management, technical and other staffs and programmers and

influence them and change their mind and attitudes.

Analytical skill

▪ System analyst must be able to perceive the core problem & discard

duplicate data.

▪ He must find the solution of problem using appropriate analytical

tools
COMPILED BY RAMESH PRAJAPATI 47

Characteristics of System Analyst

Breadth of knowledge

▪ System analyst should have knowledge about various types of

peoples, their jobs, perception to handle the team

Character and ethics

▪ Ethics is personal character quality. Successful analyst must be

professional, resourceful, inventive and creative.

▪ System analyst requires a strong character and sense of ethics.

Problem solving skill

▪ System analyst must have skills of defining and analyzing the

problems, considering, evaluating and selecting the alternatives.

COMPILED BY RAMESH PRAJAPATI 48

System Design Tools

Data Flow Diagram (DFD)

Entity Relationship Diagram (E-R Diagram)

Flowchart

Decision Table

Decision Tree

Unified Modeling Language (UML)

Use Case Diagram

COMPILED BY RAMESH PRAJAPATI 49

System Design Tools

Data Flow Diagram (DFD)

▪DFD is a graphical tool that allows analysts to understand the
flow of data in an information system.

▪DFD is a picture of movement of data between external entities
and the processes and data stores within the system.

▪It is a traditional visual representation of the information flows
within the system but does not show program logic or
processing steps.

▪It shows how information enters and leaves the system. DFD
can be categorized into following.

COMPILED BY RAMESH PRAJAPATI 50

System Design Tools

Context Diagram (Level - 0 DFD)

▪DFD Level 0 is also called a Context Diagram.

▪It’s a basic overview of the whole system or process being
analyzed or modeled.

▪It’s designed to be an at-a-glance view, showing the system as a
single high-level process, with its relationship to external
entities.

▪It should be easily understood by a wide audience, including
stakeholders, business analysts, data analysts and developers.

▪Context diagram has single process.
COMPILED BY RAMESH PRAJAPATI 51

System Design Tools

Level - 0 DFD

COMPILED BY RAMESH PRAJAPATI 52

System Design Tools

Level - 1 DFD

▪DFD Level 1 provides a more detailed breakout of pieces of the
Context Level Diagram.

▪You will highlight the main functions carried out by the system,
as you break down the high-level process of the Context
Diagram into its sub processes.

COMPILED BY RAMESH PRAJAPATI 53

System Design Tools

Level - 1 DFD

COMPILED BY RAMESH PRAJAPATI 54

System Design Tools

Level - 2 DFD

COMPILED BY RAMESH PRAJAPATI 55

System Design Tools

Symbols and Notation used in DFD

▪Two common systems of symbols are named after their
creators:

▪Yourdon and Coad

▪Gane and Sarson

▪One main difference in their symbols is that Yourdon-Coad and
Yourdon-DeMarco use circles for processes, while Gane and
Sarson use rectangles with rounded corners. There are other
symbol variations in use as well.

COMPILED BY RAMESH PRAJAPATI 56

System Design Tools

▪External entity: an outside system that sends or receives data,
communicating with the system being diagrammed. They are the
sources and destinations of information entering or leaving the
system. They might be an outside organization or person, a
computer system or a business system. They are also known as
terminators, sources and sinks or actors. They are typically
drawn on the edges of the diagram.

▪Process: any process that changes the data, producing an
output. It might perform computations, or sort data based on
logic, or direct the data flow based on business rules. A short
label is used to describe the process, such as “Submit payment.”

COMPILED BY RAMESH PRAJAPATI 57

System Design Tools

▪Data store: files or repositories that hold information for later
use, such as a database table or a membership form. Each data
store receives a simple label, such as “Orders.”

▪Data flow: the route that data takes between the external
entities, processes and data stores. It portrays the interface
between the other components and is shown with arrows,
typically labeled with a short data name, like “Billing details.”

COMPILED BY RAMESH PRAJAPATI 58

System Design Tools

Notations Yourdon and Coad Gane and Sarson

External Entity

Process

Data Store

Data Flow

COMPILED BY RAMESH PRAJAPATI 59

System Design Tools

DFD Rules

▪Each process should have at least one input and an output.

▪Each data store should have at least one data flow in and one
data flow out.

▪Data stored in a system must go through a process.

▪All processes in a DFD go to another process or a data store.

COMPILED BY RAMESH PRAJAPATI 60

System Design Tools

E-R Diagram

▪An Entity Relationship (ER) Diagram is a type of chart that illustrates
how “entities” such as people, objects or concepts relate to each other
within a system.

▪ER Diagrams are most often used to design or debug relational databases
in the fields of software engineering, business information systems,
education and research.

▪Also known as ERDs or ER Models, they use a defined set of symbols
such as rectangles, diamonds, ovals and connecting lines to depict the
interconnectedness of entities, relationships and their attributes.

▪They mirror grammatical structure, with entities as nouns and
relationships as verbs.

COMPILED BY RAMESH PRAJAPATI 61

System Design Tools

Components of E-R Diagram

Entity:

▪Entity is a physical or conceptual object like person, place, event, job etc

▪One entity is related to another entity

▪Entities are represented by means of rectangles.

▪Rectangles are named with the entity set they represent.

Student Teacher

COMPILED BY RAMESH PRAJAPATI 62

System Design Tools

Components of E-R Diagram

Attributes:

▪Attribute is a descriptive property or characteristics of an entity

▪Attributes are the element, properties of entities.

▪Attributes are represented by means of ellipses.

▪Every ellipse represents one attribute and is directly connected to its
entity (rectangle).

Students

Roll_no Name Class

DOB
Address

COMPILED BY RAMESH PRAJAPATI 63

System Design Tools

Components of E-R Diagram

Relationship:

▪Relationships are represented by diamond-shaped box.

▪Name of the relationship is written inside the diamond-box.

▪All the entities (rectangles) participating in a relationship, are
connected to it by a line.

Students TeacherTeaches

COMPILED BY RAMESH PRAJAPATI 64

System Design Tools

ER Diagram

COMPILED BY RAMESH PRAJAPATI 65

System Design Tools

ER Diagram

COMPILED BY RAMESH PRAJAPATI 66

System Design Tools

Flowchart

▪A flowchart is a visual representation of the sequence of steps

and decisions needed to perform a process.

▪Each step in the sequence is noted within a diagram shape.

▪Steps are linked by connecting lines and directional arrows.

▪This allows anyone to view the flowchart and logically follow

the process from beginning to end.

▪A flowchart is a powerful business tool with proper design and

construction, it communicates the steps in a process very

effectively and efficiently.
COMPILED BY RAMESH PRAJAPATI 67

System Design Tools
Symbols Meaning

Start/End

Input/Output

Process

Condition

Connector

Control Flow
COMPILED BY RAMESH PRAJAPATI 68

System Design Tools

Flowchart

COMPILED BY RAMESH PRAJAPATI 69

System Design Tools

Decision Table

▪Decision table testing is a testing technique used to test system
behavior for different input combinations.

▪This is a systematic approach where the different input
combinations and their corresponding system behavior (Output)
are captured in a tabular form.

▪That is why it is also called as a Cause-Effect table where
Cause and effects are captured for better test coverage.

▪A Decision Table is a tabular representation of inputs versus
rules/cases/test conditions. Let's learn with an example.

COMPILED BY RAMESH PRAJAPATI 70

System Design Tools

Decision Table

▪Decision table uses a standard format and handle combination
of conditions in a very concise manner.

▪There are 3 parts in decision table

1. Condition Stub: This part of table contains the various
conditions that apply in the situation the table is modeling

2. Action Stub: This part of table lists the actions that result for a
given set of conditions

3. Rules: This part of table specifies which actions are to be
followed for a given set of conditions.

COMPILED BY RAMESH PRAJAPATI 71

System Design Tools

Decision Table

Example 1: Decision Base Table for Login Screen.

▪The condition is simple if the user provides correct username
and password the user will be redirected to the homepage. If any
of the input is wrong, an error message will be displayed.

Process Name Rule 1 Rule 2 Rule 3 Rule 4

Conditions
Is Username Correct? F T F T

Is Password Correct? F F T T

Actions
Show Error Message. T T T F

Show Home page. F F F T

COMPILED BY RAMESH PRAJAPATI 72

System Design Tools

Decision Table

Interpretation:

▪Case 1 – Username and password both were wrong. The user is shown an
error message.

▪Case 2 – Username was correct, but the password was wrong. The user is
shown an error message.

▪Case 3 – Username was wrong, but the password was correct. The user is
shown an error message.

▪Case 4 – Username and password both were correct, and the user
navigated to homepage

COMPILED BY RAMESH PRAJAPATI 73

System Design Tools

Decision Tree

▪A decision tree is a graph that uses a branching method to

illustrate every possible outcome of a decision.

▪It is also a technique to represent condition and actions in a

diagrammatic form in computer.

▪The diagram resembles the branches of tree.

▪The root of the tree is the starting point of the decision sequence

and progression from the left to right along a particular branch is

the result of making a series of decisions.

COMPILED BY RAMESH PRAJAPATI 74

System Design Tools

Decision Tree

An example of decision tree to show the calculations of discount
policy

▪if the customer is Regular and purchased amount >=1000 then
10% discount

▪if the customer is Regular and purchased amount<1000 then 5%
discount

▪if the customer is not Regular and purchased amount>=1000 then
3% discount

▪if the customer is not Regular and purchased amount<1000 then
0% discount

COMPILED BY RAMESH PRAJAPATI 75

System Design Tools

Decision Tree

Is Customer

Regular?

Is purchased

amount>=1000

Is purchased

amount>=1000

10% discount

5% discount

3% discount

0% discount

Yes

Yes

No

Yes

No

No

COMPILED BY RAMESH PRAJAPATI 76

System Design Tools

Use Case Diagram

▪A Use Case diagram is a graphic representation of the interactions among
the elements of a system.

▪It is a methodology used in system analysis to identify, clarify and
organize system requirements.

▪Use case diagram represents defines what can be done in system instead
of defining how it is done.

▪A use case diagram is usually simple and maintains following conditions.

▪It only summarizes some of the relationships between use cases, actors
and systems.

COMPILED BY RAMESH PRAJAPATI 77

System Design Tools

Use Case Diagram

▪It does not show the order in which steps are performed to achieve the
goals of each use case.

▪Use case represents only functional requirements of a system.

▪Use case diagram consists of actors and actions

▪actor: It is an external entity that interacts with the system. It is someone
or something that exchanges information with the system

▪Action: It represents a sequence of related tasks initiated by an actor to
accomplish a specific goal. It is specific way of using the system.

COMPILED BY RAMESH PRAJAPATI 78

System Design Tools

System

▪System boundaries are drawn using a rectangle that contains use
cases. Actors are placed outside the system boundaries

Use Case

▪Use case is drawn using ovals. System functions are labelled
with verbs.

System name

Use case

COMPILED BY RAMESH PRAJAPATI 79

System Design Tools

Actors

▪Actors are the users of a system. Actor or user interacts with the
system

Relationship

▪Relationships between an actor and a use case is illustrated with
a simple line.

COMPILED BY RAMESH PRAJAPATI 80

COMPILED BY RAMESH PRAJAPATI 81

System Design Tools

Unified Modeling Language (UML)

▪ Unified Modeling Language (UML) was developed by Grady

Booch, Ivar Jacobson and James Rumbaugh at Rational

Software in 1990's.

▪ It was adopted by Object Management Group (OMG) in 1997.

It is a standardized, general purpose modeling language in the

field of software engineering.

▪ It includes a set of graphic notation technique to create visual

models of object oriented software intensive system.

COMPILED BY RAMESH PRAJAPATI 82

System Design Tools

Unified Modeling Language (UML)

▪ UML diagram has ability to represent complex relationship as

well as to represent data and data processing with consistent

notation

▪ There are various techniques such as Use Case, Class

diagram, State diagram, sequence diagram

▪ All these techniques and associated notations are incorporated

into a standard object-oriented language called Unified

Modeling Language (UML)

COMPILED BY RAMESH PRAJAPATI 83

System Design Tools

Unified Modeling Language (UML)

▪ UML is language for specifying, visualizing and constructing

the artifacts of software systems as well as for business

modeling

▪ UML notation is useful for geographically depicting object

oriented analysis and design models

▪ It specifies requirements of system and promotes

communication among key persons involved in the

development efforts.

COMPILED BY RAMESH PRAJAPATI 84

Quality of Software

▪Quality software refers to software which is reasonably bug or defect
free, is delivered in time and within the specified budget, meets the
requirements or expectation and is maintainable.

▪It is defined as the ability of the software to function as per user
requirement.

▪Good Design: It is important to have a good and beautiful design to
satisfy users

▪Reliability: It should be able to perform the functionality perfectly
without issues

▪Durability: It is the ability to work without any issue for a long period of
time

COMPILED BY RAMESH PRAJAPATI 85

Quality of Software

▪Consistency: It should perform consistently over platform and devices

▪Maintainability: Bugs associated with software should be able to
capture and fix quickly and new tasks and enhancement should be added
without trouble.

▪Security: Data must be protected and secured against unauthorized
access. Poor coding and architectural weakness leads to vulnerabilities.

▪Performance: It refers to an application's use of resources and how that
affects its scalability, customer satisfaction, and response time

▪Portability: Software must be possible to continue using the same basic
functions in different situations.

COMPILED BY RAMESH PRAJAPATI 86

System Development Models

▪A system development model is a framework that is used

to structure, plan and control the process of developing

an information system.

▪Depending on the size and purpose of an organization,

the system development model used may be different.

▪Some of the most commonly used system development

models are waterfall model, spiral model, prototype

model, agile model etc.

COMPILED BY RAMESH PRAJAPATI 87

System Development Models

Waterfall Model

▪The waterfall model was the first system model.

▪It is also referred as a linear-sequential life cycle model.

▪It is very simplest and easiest model of SDLC.

▪In waterfall model each phase must be completed before the

next phase can begin.

▪There is no overlapping in the phases.

▪In this model, the outcome of one phase acts as the input for the

next phase sequentially.
COMPILED BY RAMESH PRAJAPATI 88

Water Fall Model

COMPILED BY RAMESH PRAJAPATI 89

System Development Models

Problem definition: All possible requirements of the system to be

developed are captured in this phase and documented in a requirement

specification document.

Analysis: System analysis and study is completed in this phase.

Feasibility Study: The economic, social feasibility study is accomplished

in this phase.

System design: The requirement specifications from first phase are

studied in this phase and the system design is prepared. This system design

helps in specifying hardware and system requirements and helps in

defining the overall system architecture.

COMPILED BY RAMESH PRAJAPATI 90

System Development Models

Development: System is developed using different development

tools and programs.

Testing: The new system is tested for errors and drawbacks.

Maintenance: The system maintenance is accomplished

according to the result given by testing.

Implementation: The system is implemented in organization.

COMPILED BY RAMESH PRAJAPATI 91

System Development Models

▪Advantages

▪Simple and easy to understand and use

▪Easy to manage due to the rigidity of the model.

▪Phases are processed and completed once at a time.

▪Works well for smaller projects where requirements are very well

understood.

▪Clearly defined stages.

▪Well understood milestones.

▪Easy to arrange tasks.

▪Process and results are well documented.

COMPILED BY RAMESH PRAJAPATI 92

System Development Models

▪Disadvantages

• No working software is produced until late during the life

cycle.

• High amounts of risk and uncertainty.

• Not a good model for complex and object-oriented projects.

• Poor model for long and ongoing projects.

• It is difficult to measure progress within stages.

• Cannot accommodate changing requirements.

COMPILED BY RAMESH PRAJAPATI 93

System Development Models

Prototype Model

▪Designing and developing small sized, similar but functional

version of desired system is known as prototyping.

▪In this model before designing phase, a prototype is developed,

tested, reviewed and approved by the customer.

▪After that design will be ready for coding, testing, installation

and maintenance.

▪This prototype is prepared based on the customer requirements.

COMPILED BY RAMESH PRAJAPATI 94

System Development Models

Prototype Model

▪By using this prototype, customer can understand the requirements

of desired system and also the customer can get an “actual feel” of

the system.

▪It is an attractive idea for complex and bigger systems.

▪This Prototype Model is same as waterfall model, but in this model

we need to develop prototype and customer interaction will be there.

▪Since there is customer interaction there will be less chance of

rejection.

COMPILED BY RAMESH PRAJAPATI 95

Prototype Model

COMPILED BY RAMESH PRAJAPATI 96

System Development Models

▪Features of Prototype model

• Whenever the customer is not clear about the

requirement in this situation we generally go for

prototype model.

• If it is complex project then prototype model makes us

clearly understand the requirement.

• Prototyping make sure that the customer constantly

work with the system and provide a feedback about the

system.
COMPILED BY RAMESH PRAJAPATI 97

System Development Models
▪Advantages of Prototype model

• Customer satisfaction exists, because customer can feel the product at

very early stage.

• If there is missing functionality, then it can be identified easily

• There will be less chance of software rejection.

• Requirement changes are allowed.

• Due to customer approval we can find the errors at early stage.

• Customer involvement will be there in the development where its leads

to better solutions for any confusion / complexity / difficult functions

• The developed prototype can be re-used by developer and test engineer.
COMPILED BY RAMESH PRAJAPATI 98

System Development Models
Disadvantages of Prototype model

• It is a time consuming if customer ask for changes in

prototype.

• This methodology may expand the requirements beyond

original plans.

• The invested effort in the preparation of prototypes may be too

much if not properly monitored.

• Customer may get confused in between the prototypes and real

systems.

COMPILED BY RAMESH PRAJAPATI 99

System Development Models

Agile Model

▪Agile model refers to a software development approach based

on iterative development which breaks tasks into smaller

iterations, or parts do not directly involve long term planning.

▪Project scope and requirements are laid down at the beginning

of the development process and plans regarding number of

iterations, duration and the scope of each iteration are clearly

defined in advance

COMPILED BY RAMESH PRAJAPATI 100

System Development Models

Agile Model

▪Each iteration is considered as a short time "frame" which

typically lasts from one to four weeks.

▪The division of projects into smaller parts reduce the overall

project delivery time requirements

▪Each and every iteration involves a team working through a full

software development life cycle.

COMPILED BY RAMESH PRAJAPATI 101

System Development Models

COMPILED BY RAMESH PRAJAPATI 102

System Development Models

Phases of Agile Model

▪Requirements gathering:

▪Requirements are defined and business opportunities are

explained to plan the time and effort needed to build the project.

▪Design the requirements:

▪We can use high level user flow diagram or high level UML diagram to

show the work of new features and show how it will apply to your

existing system

COMPILED BY RAMESH PRAJAPATI 103

System Development Models

Phases of Agile Model

▪Construction/iteration:

▪Designer and developers start working on their project, which

aims to deploy a working product. Product will go various

stages of improvements

▪Testing:

▪Quality Assurance (QA) team examines the product's performance and

looks for the bug

COMPILED BY RAMESH PRAJAPATI 104

System Development Models

Phases of Agile Model

▪Deployment:

▪The team issues a product for the user's work environment

▪Feedback:

▪After releasing the product, the last step is to receive feedback about the

product and work through the feedback.

COMPILED BY RAMESH PRAJAPATI 105

System Development Models

Advantages of Agile Model

▪Frequent delivery of product

▪Face-to-face communication with clients

▪Efficient design and fulfils the business requirement

▪Anytime changes are acceptable

▪It reduces total development time

COMPILED BY RAMESH PRAJAPATI 106

System Development Models

Disadvantages of Agile Model

▪Not suitable for handling complex dependencies

▪Depends heavily on customer interaction, if customer is not

clear, the project may go in the wrong direction

▪Transfer of technology to new team members may be quite

challenging due to lack of documentation

COMPILED BY RAMESH PRAJAPATI 107

Documentation & its importance

❑Documentation plays very important roles in software

development process and it provides the basic guide lines for the

modification and enhancement of the software in future

❑In each stage completion, the team members hand over the

documentation to the next team member of another stages so

that they can communicate well about the system

❑Documentation is the process of communication about the

system and it is one of the most important parts of software

development.

COMPILED BY RAMESH PRAJAPATI 108

Documentation & its importance

❑It becomes easy to extend, re-design and debug the system

through documentation

❑It is process to help users of system and other people to use and

interact with system

❑It refers to keeping records of all project information in the

system development process

❑The different types of documentation techniques are printed

manuals, user manuals, guides, reference manuals, technical

reference guides, installation guides, configuration guides,

administration guides, online documentation and help system

COMPILED BY RAMESH PRAJAPATI 109

Documentation & its importance

❑Types of documentations

❑Program manual:

❑It is written by the system programmer during development

process.

❑It is written in the line of source code within programs.

❑It is very useful for the program modification and maintenance

of the system.

❑These types of documentations are not visible for the general

users

COMPILED BY RAMESH PRAJAPATI 110

Documentation & its importance

❑Types of documentations

❑System manual

❑System manual is a physical description of a system, device or

process.

❑This technical description is used by expert users and designers

as guidelines to maintain and modify various elements of the

system.

❑These descriptions are intended for experts who must make

informed decisions about the installation, capabilities,

modifications and applications of the software.
COMPILED BY RAMESH PRAJAPATI 111

Documentation & its importance

❑Types of documentations

❑User manual

❑User documentation includes the product guidelines addressed

to the general user who needs to know basic requirements for

getting the best use of software system.

❑User documentation includes the manuals for software product

use.

COMPILED BY RAMESH PRAJAPATI 112

OOP Vs POP
SN OOP POP

6 Problems are viewed as real world entity Problems are not viewed as real world

entity

7 OOP is written by using High Level

Language (HLL) such as C++, Java,

ASP.NET etc

POP is written by using High & Middle

Level Language (HLL & MLL) such as C,

Pascal, FORTRAN etc

8 Concept of encapsulation provides high

level of security

Security can not be maintained due to

lack of such feature

9 Easy to reuse existing program because of

inheritance feature

No proper mechanism for reuse of

existing code

10 New data and functions can be easily

added whenever required

Adding new data and function is difficult

and time consuming

COMPILED BY RAMESH PRAJAPATI 113

Thank You
END OF UNIT 6

COMPILED BY RAMESH PRAJAPATI 114

	Slide 1: Unit 6
	Slide 2: Concept of System
	Slide 3: Concept of System
	Slide 4: Concept of System
	Slide 5: Concept of Project
	Slide 6: Software Development Process
	Slide 7: SDLC Life Cycle
	Slide 8: SDLC Life Cycle
	Slide 9: Importance of SDLC
	Slide 10: Importance of SDLC
	Slide 11: Importance of SDLC
	Slide 12: Phases of SDLC
	Slide 13: Phases of SDLC
	Slide 14: Phases of SDLC
	Slide 15: Phases of SDLC
	Slide 16: Phases of SDLC
	Slide 17: Phases of SDLC
	Slide 18: Phases of SDLC
	Slide 19: Phases of SDLC
	Slide 20: Phases of SDLC
	Slide 21: Phases of SDLC
	Slide 22: Phases of SDLC
	Slide 23: Phases of SDLC
	Slide 24: Phases of SDLC
	Slide 25: Phases of SDLC
	Slide 26: Phases of SDLC
	Slide 27: Phases of SDLC
	Slide 28: Phases of SDLC
	Slide 29: Phases of SDLC
	Slide 30: Phases of SDLC
	Slide 31: Phases of SDLC
	Slide 32: Phases of SDLC
	Slide 33: Phases of SDLC
	Slide 34: Phases of SDLC
	Slide 35: Phases of SDLC
	Slide 36: Phases of SDLC
	Slide 37: Phases of SDLC
	Slide 38: Phases of SDLC
	Slide 39: System Analyst
	Slide 40: Roles of System Analyst
	Slide 41: Roles of System Analyst
	Slide 42: Roles of System Analyst
	Slide 43: Responsibilities of System Analyst
	Slide 44: Responsibilities of System Analyst
	Slide 45: Responsibilities of System Analyst
	Slide 46: Characteristics of System Analyst
	Slide 47: Characteristics of System Analyst
	Slide 48: Characteristics of System Analyst
	Slide 49: System Design Tools
	Slide 50: System Design Tools
	Slide 51: System Design Tools
	Slide 52: System Design Tools
	Slide 53: System Design Tools
	Slide 54: System Design Tools
	Slide 55: System Design Tools
	Slide 56: System Design Tools
	Slide 57: System Design Tools
	Slide 58: System Design Tools
	Slide 59: System Design Tools
	Slide 60: System Design Tools
	Slide 61: System Design Tools
	Slide 62: System Design Tools
	Slide 63: System Design Tools
	Slide 64: System Design Tools
	Slide 65: System Design Tools
	Slide 66: System Design Tools
	Slide 67: System Design Tools
	Slide 68: System Design Tools
	Slide 69: System Design Tools
	Slide 70: System Design Tools
	Slide 71: System Design Tools
	Slide 72: System Design Tools
	Slide 73: System Design Tools
	Slide 74: System Design Tools
	Slide 75: System Design Tools
	Slide 76: System Design Tools
	Slide 77: System Design Tools
	Slide 78: System Design Tools
	Slide 79: System Design Tools
	Slide 80: System Design Tools
	Slide 81
	Slide 82: System Design Tools
	Slide 83: System Design Tools
	Slide 84: System Design Tools
	Slide 85: Quality of Software
	Slide 86: Quality of Software
	Slide 87: System Development Models
	Slide 88: System Development Models
	Slide 89: Water Fall Model
	Slide 90: System Development Models
	Slide 91: System Development Models
	Slide 92: System Development Models
	Slide 93: System Development Models
	Slide 94: System Development Models
	Slide 95: System Development Models
	Slide 96: Prototype Model
	Slide 97: System Development Models
	Slide 98: System Development Models
	Slide 99: System Development Models
	Slide 100: System Development Models
	Slide 101: System Development Models
	Slide 102: System Development Models
	Slide 103: System Development Models
	Slide 104: System Development Models
	Slide 105: System Development Models
	Slide 106: System Development Models
	Slide 107: System Development Models
	Slide 108: Documentation & its importance
	Slide 109: Documentation & its importance
	Slide 110: Documentation & its importance
	Slide 111: Documentation & its importance
	Slide 112: Documentation & its importance
	Slide 113: OOP Vs POP
	Slide 114: Thank You

